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Al~raet--Tbe forces and torques on two moving solid particles suspended in a fluid and almost in 
contact with each other (or on a particle almost in contact with a wall) are found in terms of their 
relative motion by using a type of lubrication theory, the results so obtained being asymptotically 
valid for small gap widths. It is assumed that the surfaces of  the particles involved if brought together, 
are such that contact would occur at a single point at which surface curvatures are finite. 

1. I N T R O D U C T I O N  

Goldman, Cox & Brenner (1967), following the earlier work by O'Neill (1964) and by 
Dean & O'Neill (1963), investigated theoretically the slow motion of a solid sphere through 
a viscous fluid near a plane wall. Translation of the sphere parallel to the wall and rotation 
of the sphere about an axis parallel to the wall were considered. It was assumed that the 
fluid was at rest at infinity and that the fluid inertia was negligible in comparison to viscous 
effects so that the creeping motion equations were valid. These equations were solved by 
expressing them in terms of spherical bipolar coordinates. However the numerical computa- 
tion of the "exact" solutions obtained, converged poorly if the gap width, a between sphere 
and plane became very much smaller than the sphere radius R. Thus in order to obtain 
exact solutions for such cases, Goldman, Cox & Brenner (1967) developed a lubrication 
theory which gave the force and torque on the sphere which was asymptotically correct 
for small values of the ratio aiR. Such asymptotic results agreed favourably with the 
"exact" solutions for the smallest values of air calculated. O'Neill & Stewartson (1967) 
obtained a more accurate solution asymptotically correct for small air by matching the 
lubrication theory valid within the gap onto an outer solution valid elsewhere obtained 
using tangent sphere coordinates. 

The present paper extends the lubrication theory to obtain the forces and torques acting 
on any two solid surfaces separated by a viscous fluid, the surfaces being such that if they 
were to be brought together, contact would occur at a single point only. The forces and 
torques on the surfaces are found as the leading terms of asymptotic expansions valid for 
small gap widths. From such results the asymptotic forms of the resistance matrices for 
the surfaces are found. These results are then applied to the problem of calculating the 
forces and torques on two spheres (of unequal radii) almost in contact and on a sphere and 
cylinder almost in contact. In the former case, when the radius of one sphere tends to 
infinity the results reduce to those given by Goldman, Cox & Brenner (1967) whereas for 
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the case in which sphere radii are equal, the results reduce to those given by Zia. Cox & 
Mason (1967). Also for the tangential motion of two unequal spheres, the results of O'Neill 
& Majumdar  (1970) are obtained. 

The implications and uses of this type of lubrication theory are discussed in the final 
section. 

2. M E T H O D  O F  S O L U T I O N  

Consider two particles suspended in a fluid of viscosity /~ such that their surfaces H' 
and W' are almost in contact and are such that if they are brought together, contact would 

occur at a single point at which the principal curvatures of both surfaces are finite. It is 

assumed that both surfaces are rigid and that their minimum separation distance, a, is very 

much smaller than the radii of curvature of the surfaces at the point of minimum separation. 

It is assumed also that both surfaces W and W' move in some prescribed manner and that 

it is required to find the forces and torques acting upon each of the surfaces as a result of this 
motion. The fluid in the gap between the surfaces is assumed to be incompressible and 
Newtonian and the Reynolds number for its motion so small that inertial effects may be 
neglected. The fluid velocity u and pressure p then satisfy the creeping motion equations 

/ I V 2 u  - -  V D ~ 0 ,  

V - u  = O, [2 .1 i  

with given values ofu on the surfaces W and W'.  Rectangular Cartesian axes ix 1 . x2..x-O are 

taken with origin O in the surface W at the point of minimum separation of the surfaces. 

The x3 axis is taken to be normal to the surface Wand hence also to the surface W'. The 

xl and x 2 axes are then chosen as tangents to the surface W in such a manner that they lie 
in the directions of the principal curvatures of the surface W at O. The surface W itself may 

then be written as 

\ 3  = - ( x ~ / 2 R  1) - { x2 /2R2)  + O{r3), [2.2ai] 

~ 1 ~ for small values of r = [x~ + x~) -. where R1 and R2 are the principal radii of curvature 
of the surface W at O. However if the surface W is symmetric in the sense that in [2.2a] the 
value o fx  3 remains unchanged if x: and x2 are replaced by - x ~  and - x 2  respectively, then 
the equation for the surface W must be of the form 

,.) 
x ~ = - ( . ' G . ~ , R I )  - ( x 2 / 2 R 2 )  + O(r'*). ~2.2b 

While the leading terms of the asymptotic forms of most of the resistance coefficients can 
be found for the general form of surface [2.2a], there are some which become singular for a 
surface of type [2.2a], even though they are non-singular for a surface of type [2.2b3. These 
latter values will not be calculated here since their evaluation requires knowledge of the 
O(r 3) terms in [2.2a]. There are still other resistance coefficients which are never singular 
and their calculation will be shown to require knowledge of the complete particle shape and 
not just the form of the surface taken near the point O. 

A new rectangular Cartesian coordinate system (xT,  x'~, x*)  is now chosen in such a manner 
that its origin O' lies both on the x3-axis and the surface W'. The ,x*3 axis is taken to coincide 
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with the x3 axis and the x* and x~ axes chosen so as to lie in the directions of the principal 
curvatures of the surface W' (see figure 1). The surface W' may then be written as 

x~ = (x~/2/2S1) + (x~2/2S2) + O(r*3), [2.3a] 

for small values of r* = (x .2 + x~2) 1'2, where S~ and $2 are the principal radii of curvature 
of the surface W' at O'. If this surface W' is symmetric so that replacing x~' and x~' by - x* 
and - x* leaves x~' unchanged, then the surface W' is of the form 

x* = (x'¢2/2SI) + (x'~2/2S2) + O(r*4). [2 .3b]  

Let @ be the angle between the Xl and x* axes (x~ axis to the x~' axis in the positive sense). 
The x~', x~', x~ coordinates are then related to the x~, x2, x3 coordinates by the relations 

x* = x l c o s d p  + xzsindp, x* = - x l s i n q ~  + x2cosc  ~ x'~= x 3 - a ,  [2.4] 

so that the surface W, given by [2.3a] is rewritten in the form 

[ c°s2 O sins q~l + x,x2 - sin 4, cos ~ + x, 2 + 
x 3 = a -{- x 2 ~ 2St + 2S2 ] ~t  ~ ~ 2S1 -~z--z ] 

• + 00.3). [2.5] 

If u = lug, u2, u 3) relative to the x~, x 2, x 3 axis system then [2.1] is written as 

,, + ~ + ~, - ~ = o, ~ + ~x~ + ~ - ~ = o, 

[2.6] 
Op Ou l ( c~_~2 0 2 ~ )  t ~ u 2 0 U s = o "  

If U and U' are, respectively, the velocities of the walls W and W' at 0 and 0'  and if 11 
and 11' are respectively the angular velocities of W and W' then the no slip boundary 

St 

a x lo 

Figure I. The  surfaces W and W'. 
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condition for u at the wall W is 

u = U  + f ~  r, r o n W  [2.7] 

where r = [XI,  X2 ,  -- (xZ/2RO - (x~/2R2) + O(r3)], [2.8] 

whilst the no slip boundary condition for u on the wall W' is 

u = U'  + [1' /~ r' on  W' [2.91 

where r' = (x I , x2, x3), [2.101 

x3 being given by [2.5]. 

The velocity field (u, p) is expanded in terms of the gap separation a which is assumed 
to be very small. Such an expansion is singular, and it becomes necessary to discuss two 
regions of expansion. An outer region of expansion is defined using the coordinates 

(x~, x2, x3) as independent variables and u and p as dependent variables. Thus in this 
region [2.6] with boundary conditions [2.7~ and [2.9~ are valid. However in the limit of 
a -~ 0, the two surfaces touch, the point of contact being a singular point for the flow. 
Thus an inner region of expansion is defined using (.f~, Y2, ;3) as independent variables 
and r and/~ as dependent variables where 

-~1 = a -  1 2x l , -'(2 = a -  1/2x2, -*~3 -~- a -  ix  3 [2.11] 

and /]l = a ( l " 2 - k ) u l ,  /]2 = a ( l / 2 - k ) u 2 ,  /]3 = a - k u 3 ,  P = a(Z-k)P,  [2.12] 

k being a constant as yet undefined. 

By making use of [2.11] and [2.12], [2.6] may be converted to inner variables. It is then 
seen that fi and/~ must possess an expansion of the form 

fi = U o  + aul  + " '  

/~ =/~o + aPl + " [2.13~ 

where the flow field (rio,/~o) satisfies 

02(/]0) 1 8/~0 02(/]0)2 (~)/~ 0 8PO 0(/]0)1 8(/]0)2 ('3 (/]OJ3 
/ ~ 2  - 0 ,  /~ ~~2 - 0 ,  - - = 0 ,  + - + . . . . .  

CX3 6 ;1  (JX3. (~;2 0"~3 ~ t2;2 (':;3 

and the flow field (ill,/51) satisfies 

- 0  

I2.141 

.~2 ~ -  ~ '  + (G), ~ 0 ~  0;2 ~ t ~  + (/]0)2 CX 3 CX 1 CX2 

0Pl  02(/]0)3 ~(/]1)1 t~(/]1)2 0(/]1)3 - 0. [2.15] 

Relative to the inner variables [2.11], [2.2a] for the wall W takes the form 

~3 = - (~2/2R,)  - (;2/2R2) + O(al/2) [2.16] 
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whilst [2.5] for the wall W' takes the form 

[cos2 q~ sin2 ~b I (1  1) (sin2 ~b cos2 ~b I 
-x3 = 1 + £2 I ~  + ~ ]  + ~13~ 2 S I  - $2 sin ~b COS #b + .~2 2 ~ + 2S2 l 

+ O(a~/2). [2.17] 

In order to solve [2.14] with boundary conditions on W and W', it is convenient to change 
variables to (.~1, x2, -~3) where 

so that the wall W becomes 

and the wall W' becomes 

x3 = "x3 + (~/2R~) + (.~2Z/2R2) 

Y'3 = O(al/2) 

"~3 = h (Xl , -~2)  + O(al/2) 

where the function h(.~ 1 , -~2) is defined as 

(l cos2  sin 0  (1 ,) 
h(-~l, -~2) = 1 + .~ ~ + - ~  + 2S2 ] + -~,-~2 ~ - ~-2 sin 4' cos 4) 

1 sin 2 ~b c°s2 q~l" 
+ - +  ! 

With the new variables (xl, "~2, "~3), [2.14] for (rio,/~o) take the form 

(~ 2(t~0)2 ~Po X2 C3]70 (~P0 C~2(*/Oh c~/~o -~1 C~Po = 0, / ~ -  
/~ 63X32 63X1 R163X3 63~ 2 63~ 2 R263-~ 3 = 0 ,  ~ 3  = 0, 

[2.18] 

[2.193 

[2.20] 

[2.21] 

Sinoe the creeping motion equations are linear, and since (u, p) and hence (rio,/~o) depend 

and 

(ao)~ = a-k{a~/ZUt -- aD3.x2 -- a3/2Dz[(.~2/2R1) + (.~2/2R2)] + O(a2)}, 

(i~o) 2 = a-k{al/2U2 + a~3.~ 1 + a3/2~l[(x2/2Rl) + (x~/2R2)]  + O(a2)} ,  

(ao)3 = a-k[u3 + al/2(Dl~2 -- D2~1)] on W [2.23] 

(a,01 = a-k[al/2U'l - aft'3Y~2 + aa/2D'2h(~l, x2) + O(a2)], 

(Uo)2 = a-k[al/2U'2 + afl'3xl -- a3/2fI'lh(xl, :~2) + O(a2)], 

(Uo)3 = a-k[u'3 + al/2(f/~x2 -- f/~xl)] on W'. [2.24] 

The boundary conditions [2.7] and [2.9] applicable on the walls Wand W' may be expressed 
in inner variables and so one may write the boundary conditions for fi0 in he form 

~(/~O)l (~(1~0)2 ~(~0)3 XI ~(110)1 X2 ~(110)2 
~---~ + ~ x 2  + ~----3- + R1 ~Y~3 + R2 ~ -  = O. [2.22] 
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linearly upon U, U',  11 and ~ ' ,  it follows that  

rio = fiA + ft, + tic, [~o : PA + PB + [Jc [2.25q 

where the flow fields (fi,,/~a), {fin,/~n) and (tic,/~c) each individually satisfy [2.14] and where 
(fiA,/~a) is the flow resulting from U3 and U'3, (fin,/~n) is the flow resulting from U~, U2, 

f ~ ,  a') z , U'~, U'2, f~'~ and ~q~ and (tic,/~c} is the flow resulting from f ~  and f~'~. Thus  [ti.4, P~41 

satisfies the bounda ry  condi t ions 

(UA)I  = (ldA)2 = 0 ,  (i4A) 3 = a - k U 3  on W [2.26] 

(~7A)1 = (~A)2 = 0, (t7413 = a-kU'3 on W [2.27] 

whilst (fis, /)s) satisfies {uB), = O k + l " 2 U  1 ~- O { o  k + 3 , 2 )  

and 

(/]B)Z = a-k+l/2U2 4- O(a-k+y2), (/~B)3 = a k+ 1 2{~,-'~1.~ 2 __ ~,~2~1} 

{/IB) l = (d-k+l 2U'I 4- 0{0 k ~ 3 , 2 }  

(/~B)2 = a-k+l/2u2 4- O(o-k+3 el" (/riB)3 = O - k + l  2{~')'1X2 - -  ~"~'2XI I 

on W [2.28] 

on W' (2.29] 

and (tic,/~c) satisfies 

(uc)l = a-k+l(--~"~3-~2), [/tiC)2 = t/-k+ 1([~3"~1}, (/~C)3 = 0 on W [2.30] 

and (Uc)l = a-k+l[--~'322), t/~C)2 = g/ k + l [ ~ ' ) 3 " ~ l ) "  {14(')3 = 0 on W'. [2.3l] 

The  walls W and W' are taken to be 

and 

-~3 = 0 [2.32] 

Y,~ = h ( x l ,  x2) [2.33] 

with an error O(a + 1/2) in these expressions (see [2.19] and [2.20]). 
F rom the bounda ry  condit ions [2.26] and [2.31] it is seen that in order to calculate 

(fiA, /SA) one must  take k = 0, whilst for (fiB,/Ss), k = 1/2 and for {tic,/~c), k = 1. 
It should be noted that  the inner flow fields when expressed in terms of outer  variables 

by [2.11] and [2.12] must be matched  onto the outer  expansion. It will be shown later that 
it is unnecessary to calculate in detail this outer  expansion in order  to find the force and 
torque exerted on W and W' to the order in a with which we shall be concerned.  However ,  
it should be noted that  the outer  expansion cannot  contain any terms which tend to infinity 
as a ---, 0 for a fixed value of r, a l though any term in this expression may tend to inlinit~ 

as r tends to the contact  point. 

3. D I R E C T  A P P R O A C H  O F  S U R F A C E S  

F r o m  the boundary  condit ions [2.26] and [2.27] the flow field (ii A,/)A) of the inner 
expansion is that  which results from the direct approach  of the two surfaces (i.e. it results 
from U 3 and U~). Thus  taking k = 0, the boundary  condit ions on fiA become 

{/~A)I = (I]A)2 = 0 ,  (I]A) 3 = U3 o n  .2 3 = 0 ,  [ 3 . 1 ]  
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(t~A) 1 ----" (I~A) 2 = 0 ,  (i~A) 3 = U~ on x3 = 'h(~l i  x2) ' [3.2] 

in the limit of a - ,  0. 
Since (fiA,/~) satisfies [2.22], it follows that 

I ~/3~ ~ + Bx3 + D [3.3] 1 ~PA ~2 + A~3 + C, (UA)2 2/~ ?22 PA =/~A(21,22), (u.0, = 2-~ ~2---T = - -  

where A, B, C and D are constants obtained from.the ~3 integration and are thus arbitrary 
functions of~ I and x2. These quantities A, B, C and D may be determined from the boundary 
conditions E3.1] and [3.2] as 

I I 
A = 2 p  102,/h(21,  x2) B = - 2-p ~0~2] 

Substituting the expressions for (t~ah and (t~a) 2 given by [3.3] into the last of [2.22] and 
integrating with respect to 23 one obtains 

where E is an arbitrary function 0f21 and 22. 
Since (uA)3 = U3 on 23 -- 0, it follows that 

E = U3. [3.6] 

Also since (uA)3 = U~ on x3 = h(21,22), 

(V; - U3) -- - 6--~ ~ ~--~-2 + ~ 2 2 ]  - ~ ~ + 

Substitution of the values of A and B from [3.4] into [3.7] yields 

in which/~A and h are functions of 2~ and ~2 and in which all derivatives are taken with 
respect to the variables 2~ and x2- Equation [3.8] may be written as 

V" (h3V/~,4)= 120(U; - U3) [3.9] 

where k(2~, 22) is defined by [2.21]. One may write this expression for h in the form 

h = 1 + £ r . K - £  [3.10] 
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where ~ is the column vector 

(:~z) [3.11] 

and £ r  is its transpose. Then K is the matrix 

( I t / 1 cos 2 q5 sin 2 q5 sin ~b cos ~b [ 1 

}-- S ~ 1 - ~  2 R 2 + ~ - I  + 2S 2 / 

Define ),~ and )-2 as the eigenvalues and ~T and £3 as the corresponding normalized 
eigenfunctions of the matrix K. Thus 2~ and )-2 are the roots of 

IK - ;tl] = 0 [3.13] 

where l is the identity matrix and £* and ~ satisfy 

and 

~,T ~ ,  = ~ f . ~  = I. E3.15~ 

If a matrix A is defined as 

A - (ff~', :~), [3.16] 

then the transformation 

£ = A . ~ ,  [3.17] 

where ~ = (2~), [3.187 

is orthogonal  and transforms [3.10] for h(£~, ~z) into the form 

h : 1 ~ - ) , l . ~ l  ~t-).2.~2 2 " [3.19] 

Thus [3.9] for the pressure/5 a expressed in terms of the £~, -~2 variables becomes 

- ?izJ = 12/2(U~ - U3). [3.20? 

In order to solve this equation, the substitution 

-~1 ----" (1/2~"2)  ~: COS 0 "~2 = ( 1 / j ' l / 2 )  : sin 0 [3.21! 

is made so that the equation takes the form 

("~'1 COS20 -'~ /]'2 sin20)F2(O2pA/Of2) dr- 2()~2 -- 21)sin 0 cos 0/(c~2/~A/c~/00) 

+ (21 sin 2 0 + 22 cos 2 0)(c~2/5a/c~02) + ()~1 sine 0 + "~2 c O S 2 0 ) r ( O ' P A / ( ~ )  
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+ 2(21 - 22)sin 0 cos O(d~A/t30 ) + (6fa/(1 + f2))(2 t cos 2 0 + 22 sin 2 0)(d/~A/c3f) 

+ (6f2/(1 + f2))(22 -- 20sin 0 cos 0(C3/SA/d0 ) ----- [12g(U~ - U3)f2/(1 + ~:2)3]. [3.22] 

If it is assumed that ira is of order ~' as ~ --, oo, then by [3.3], [3.4] and [3.5] it is seen 
that (t~a) 1 and (uA)2 are O(f"-  ~) as f - ,  oo and (t~A) 3 is of the form U 3 + O(~") as ~ --, oc. 

By expressing these quantities in outer variables and noting that the pressure and velocity 
in the outer region of expansion cannot contain any terms which tend to infinity as a ~ 0, 
it may readily be shown that n < - 4 .  Hence 

P,4 = O(f - '*)  as f ~ o0. [3.23] 

Now the solution of [3.22] which satisfies [3.23] and possesses no singularity at ? = 0 may 
be shown to be 

i0A = -[3/z(U~ - U3)/(21 + 22)][1/(1 + f2)2] + O(al/2). [3.24] 

The error term of order a I/z in the expression for/~,4 arises from the fact that the expressions 
for the walls given in the boundary conditions [3.1] and [3.2] have an error of order a I/2. 
Ifn is defined as the unit normal to the surfaces Wfrom solid to fluid, then the force F and 
torque G about O exerted by the fluid on W are given by 

F i = fwp,jnj dS  [3.25] 

and Gi = fw eijkr jPklnl dS  [3.26] 

where Pij is the stress tensor corresponding to (u, p) and dS is an element of area of the 
surface. It may readily be shown that for small values of r = (Xl 2 + x2) 1'2, n, dS and r are 

n = ( x f f R  1 + O(r2), x2 /R  2 + O(r2), 1 + O(r2)), dS = dxl dx2(1 + O(r2)) 

r = (xl,  x2, - x 2 t / 2 R t  - x2 /2Rz  + O(r3)). [3.27] 

For the evaluation of the integrals [3.25] and [3.26] the surface of W is divided into two 
ares S, and Y.,, the area S~ being defined by that part of W for which the vector 

x = , [3.28] 
~X2]  

satisfies the relation x r" K • x < e 2, [3.29] 

where K is the matrix given by [3.12] and e is a small positive arbitrary parameter inde- 
pendent of a. The area ~ is that part of the surface of W for which [3.29] is not satisfied 
(see figure 2). 

The condition [3.29] may by [2.11] and [2.18] be written in terms of inner variables as 

£ r .  K" £ _< a -  1e2 [3.30] 
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SE 

2 

~.K.x--~ 

Figure 2. The division of W into areas S,: and Z~. 

and by the comparison of [3.10] and [3.19] be further reduced to 

),~,,~ + 22.iz z <_ a-182. I3.31] 

Writing this condition in terms of : by [3.21], one obtains 

i < a 1:2~,. [3.32] 

Thus the force F and torque G given by [3.25] and [3.26] may be written as 

Fi= f pijnsdS + f p i } b d S  [3.331 

Gi ~ fs SijkrjPklRl dS + fE ~;ijkrjPkltli dS. E3.34] 
,L e 

Since ~ is independent of a, the integrals over Z~ in [3.331 and [3.34] tend to finite limits as 
a -~ 0, although each is a function of 8 and may be singular as e - ,  O. 

The integrals over S~ are evaluated by expressing all quantities in inner variables, the 
region of integration then being defined by [3.32]. The values of n, dS and r given by [3.27], 
when expressed in inner variables become 

n = [al"E(x1/Rl) + O(a),  a~:2(.~2/R 2j + O(a), 1 + O(a)} ,  d S  = a d2~ d ~ 2 { l  + O(a)] 

r = {a~'2,~,,  a~ '2~2,  - a ( ( Y Z l / 2 R ~ )  + (2~/2R2)) + O(a3 2)~). [3.35i 

The stress tensor p~ is written in terms of inner variables by [2.111 and [2.12] as 

Pll  = ak[ - a  2/3 + 2a-~t(pfi~/(n2~)], P22 = ak[ - a  2 ~  _~_ 2a- l f l (? f i2 /? .~2)~ 

P33 = ak[ - -a -ZP + 2a-- llu(~fi3/?.~3) ] 

Pt2 = P21 = ak[ a -  1/~(C31~1/C3"~2) + a 1#(~2/821)1 

Pz3 = P32 = ak[a-a:21a(Sf12/~'23) + a-l/2P(01i3/c32~2)l 

Pat = Pta  = ak[a-a/2ta( t?ul /~x3)  + a-1/21"L(c3fia/Sxl)t" [3.36] 

Substituting the values of n, dS, r and p~ given by [3.35] and [3.361 into the integrals over 
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& in [3.33] and [3.34]. one obtains 

fs p,jnjd S = a k- 1,2 f [_(.~i~/RO + kt(Ofil/tg~3) ] d21 d22 + O(a ~) 
~ ~ S L  

~ p3jnjdS = al'-l fs [-p}dxl d~2 + O(ak) 
c ~ 

and ;s gtjd'jpklntdS = d'-l:z fs l--.~2,,d.~l d.~2 + O(ak+ l/2) 
e c 

fS r.2jkrjpk,nldS=ak-l:2fS (+2i,)d:~ld~2+O(ak+l/2) 

;s c3jl'rjplanldS = ak fx [[tl/Rll - (I/R2)]~l~2ff 
r. t; 

+ ~/[- '(1((~/~2/(~.~3) - -  3(2((~/~1//~3~3)]} d 2 1  d i  2 + O ( a  k +  1/2) .  

353 

[3.37] 

[3.381 

Evaluate now the force FA and torque GA resulting from the flow field (fiA,/~A) produced 

(GA) 1 = O ( l n  a), (GA)2 =O( ln  a), 

IGA)3 = f {[1/RI - I/R2]XI&tL, + #[~l(~(aAh/0~3) - &(d(aA)l/C~3)]} dX, d& 
~s 

+ f(e) + O(a 1/2) [3.41] 

where it has been noted that the integrals in [3.33] and [3.34] over the area E~ are of Order 
a ° and may be functions of e which tend to infinity as e --, 0. Actually it would appear from 
[3.37] and [3.38] that (Fa)l, (Fa)2, (GA)I and (GA)2 are of order a °, but a closer examination 

and 

by the direct approach of the two surfaces W and W'. From [3.3] and [3.4] it is seen that the 
values of (UA)l and (t~A) 2 are given by 

(/]A)I = ~-~fl()~32 3~3 h} [3.39] 

From the value of/~A given by [3.24] it is seen that if xl and x2 are replaced by - £ 1  and 
--~2 respectively, the value of PA is unchanged whereas (fiA)l and (tiA) 2 become --(fiA)l 
and -(fiA)2 respectively. Hence it is seen that the values of F A and GA determined from 
[3.33], [3.34], [3.37] and [3.38] with k = 0 are 

(Fah = Olin a), (FA)2 = Olin aL lEA) 3 = a-1 f (--PA) dgl dxz + O(a- 1,,2) [3.40] 
~s e 
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of the error term of order  a 1~2 in /54 shows that it is of order i -3 as i ---, ~c, so that the 

integrals in the expressions for (F~)l. [FA)2, [GAb and (GAb possess logarithmic singularities 
and so give rise to terms of order In a (in much the same manner  as the expression for 
{Ga) 3 yields a term of order  In a as shown below). 

By making use of [3.39] for (ua)l and {0A) z, the above equation for (G/I)3 reduces to 

[ .  

(GAI 3 = ~ {(l/R, - 1/R2).~.cvzffa + ½hE:~2(?/3a ~'.(~) --  .{,(i'/JA.'i'.~.2)l~ d_'~, dY,~ 
~S 

+ ,['(C) + O(al/2t. [13.42] 

where A is the or thogonal  matrix 

- -  A. i i3.43] 

A = ('2", £~), 

~ '  and ~ being the normalized eigenvectors of the matrix K. Since A is or thogonal  

/ 
A = / cOS Z 

- s in 

so that the eigenvectors g* and g~ are 

cos )~] 

£* = ( - s i n z /  

Hence the t ransformat ion [3.431 is 

.i~ = ~ c o s z  + x2 sin Z, 

sin ;(/ [3.441 
cos )~/ 

sin Z ] .  ~3 45~ 
~ = ~cos Z! 

2 2  ~--- ---~ I sin X + -~ 1 COS Z" 

Substituting these values into [3.40] and [3.42] for (F / I )3  and (GA)3, one obtains 

(FA)  3 = - - a - i f  /SA d_~ I d-~ 2 + O(a -1'2) 
• t 

= ( [ ( -  sin Z cos Z)£l + (cos 2 X - s in2 )(.)x 1"~2 (G~b 
• t 

+ (sin Z cos Z)£~}(1/'R~ - l/'Rzjfia d £ ~  d . f  2 

f S  1 - 4~ /,~* + ~h[Xz(OpA/tXI} -- .{l((')ffa/l~X2 j] d- ' / l  d .v2 q- .10 : )  -b O(a I 2). 

A further substi tution using [3.21] yields 

~a - l,'zt (~2n 

(FA)3 = - - O - 1 { A 1 ) ' 2 ) - 1 ' 2 /  t P a i d i d O  + O{a ,.2) 
~ ' i = O  " O-  0 

[3.46i 

[3.47i 

From [2.18] and [3.17], the relation between the -xl, x2 variables and the ,~ ,  2 2 variables is 
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(G,4)3 = ! - sin X cos X) cos 2 0 + (cos 2 Z - sin 2 X)(,;.122)- i/2 sin 0 cos 0 
0 AI 

(sin X cos X) sin 2 01 (1/RI - 1/R2)~A(: 3 d :  d0)(,~1).2)- 1/2 d :  d0 
+ A2 

+ ½{(21/22)1/~[: sin 0 cos O(Op~/O:) - sin 2 0(0~/00t] 
= 0  = 0  

- (22/21)1/2[: sin 0 cos 0 ( 0 ~ / 0 : )  + cos 2 0(0~A/00)](1 + :2):(2122)- 1/2} d :  dO 

+ f ( e )  + 0(al/2) .  [3.48] 

If the value of/~a from [3.24] is substituted into the above equations and the integration 
with respect to 0 performed, the values of (FA)3 and (GA)3 are obtained as 

(FA)3 = 67t(Iz/a)(U'3 - Ua)(21 + 22)-1(21~.2) -1/2 :( l  + : 2 ) - 2 d :  + O(a -1/2) [3.49] 

and 

(G,~)3 = g 37t(U~ - U3)(21 + 22)- 1(2122)- l/2(1/R1 - 1/R2)(1/2x - 1/22) sin Z cos 
~-- 1/2£ . 

:a(1 + :2)-2 d :  + f ( e )  + 0(al/2) .  [3.50] 

As a ~ 0, the integral in [3.49] tends to 

fo ° :(1 + = [3.51] :2)-2 d :  ½. 

However, one cannot replace the upper limit in the integral in [3.50] by infinity since it 
then becomes divergent. Straightforward integration yields the asymptotic form of this 
integral for a ~ 0 as 

f l  T M  :3(1 + :2)-2 d :  = -½ In a + (In e - ½) + O(a). [3.52] 
1/2~ 

The substitution of this integral into [3.50] shows that (GA)3 contains a term in (In a) 
and a term in (a°). This term in a ° has a contribution from the inner area S~ proportional 
to (ln e). However since the value of (GA)3 as calculated must be independent of t in the 
limit of e ~ 0, it follows that the contribution proportional to (In e) in the term of order 
(a °) must be exactly cancelled by the contribution f ( e )  from the outer region Y.~. Therefore 
one has FA and G,I given by 

(F,0~ = O(ln a), (FA)2 = O(in a), 

(FA)3 = 3n(l~/a)(U'3 - U3)(21 @ 22)-I(2122) -I/2 .4- O(a -1/2) [3.53a] 

and 

J.M.F., Vol. I, No. 2--K 
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[Ga)t = Olin a), {GA) 2 = Olin a), 

{ G A ) 3  = - l t ( Ina)(3~z/2)(U'3  -- U3)()~t + ).2l-~()-1';.2)- ~ -'{1 R~ - I 'R2){I ,;. ~ -- 1 ,: .2)sinzcos/ 
+ O{a°). !3.54~ 

If the surfaces W and W' are each locally symmetr ic  so that replacement  of x, and x,  

by - x ~  and - x 2  leaves x 3 and x~ unchanged,  the form of the surfaces are then given b~ 

[2.2b] and [2.3b]. The theory is then altered only with respect to the order of magni tude  
of the error terms involved (e.g./~a given by [3.24] would now possess an error  of order a ~ 

instead of order  a ~2) and one would obtain that {FA) t , {Fa) 2, (GAb and (GA)2 are no longer 

singular being of order  a °. Also (F4) 3 and (Ga)3 would still be given by I3.53a~ and i3.54! 
except that (FA) ~ now has an error term of order (In a) instead of a ~ 2 as was shown b) 

Cox & Brenner (1967) and by Cooley & O'Nei l l  {1969). Thus, for this case, 

{F .~ )3  = 3r~(#/a)(U'3 - U3)(2~ + 5.2)-'(';-~';-2) ~ 2 + Ollna),  [3.53b] 

4. T A N G E N T I A L  A N D  R O L L I N G  M O T I O N  O F  S U R F A C E S  

In this section we consider the effect of the flow field (flu, PR) resulting from the tangential  
and rolling mot ion  of the surfaces W and W', Such a flow is that due to the componen t s  

UI ,  U2, U'~ and U; of the velocities U and U' and that due to the componen t s  ~ ,  ~L. 

E~'~ and ~ of the angular  velocities ~ and EE. Taking  k = ~, the boundary  condit ions 
[2.28] and [2,29] for (fiB,/~B) become for small values of a, 

(IdB) 1 ~--- U = = - -  ~"~2.~ o n  .~3 = 0 [4 .11i  + O(al,  (fiB)2 U2 + OIa),  tt~B}3 ~-]1[~2 ! 

(F~BI 1 = U'~ + O{al, (fi~)2 = U'2 + O(a),  (fiBl3 = f~'1-~2- f~'22, on 23 = h [4.2] 

where 23 = 0, .~  = h for the walls are correct  to order  a ~ 2. 

Since (fin,/~B) satisfies [2.21] it may readily be shown in a manner  similar to that used for 

(fiA,/~a) [see§ 3], the value of the flow-field (fin,/~B) is to order  [a + 1t given by 

1 1 
laB) 1 = ~2tt(~fiB/'~"c(l)-~'3 + A.Y 3 + U , .  (I~B) 2 - 2ttl?fiW'i~5(2).~,] + BY,3 + [ : , ,  

1 22 ~ / 2 - 2  - 3  ~ ~ -  
la~)~ = - 6 ,  [ I " z & / " ~ ~ )  + t,  p ~ , , x : ) ] , : ,  - ~[I~A..',"~, + t , B . ' , x 2 1 ! . , ~  

1 
- - -  [\ ' l / 'Rl((f i t f f~.~.l)  + x2 /R2 ( i  pn,/r x2)]?c.~ -- ( (A /R~Ix~  + (B R2).v. 2).~.~ 

2p 

+ (f~vre2 - f~2~1) i4.3] 

where the quantit ies A and B are functions o f , ~  and -~2 only and are given by 
1 1 

A = [{U] - U , j / h ] - ~ ( ? f i , / ~ S g ~ j h ,  B = [{U 2 - U2)/h ] . . . .  {g'fin./i~.~e)h. [4.4! 
2~ I 

By substi tut ing the value of {u~)3 given by [4.3] into the last boundary  condit ion of I4.2] 

one obtains  an equat ion f o r / ~  which may  be reduced to 

- ( l / 1 2 [ a ) h 3 ? 2 f i u  + -4 lh z IC~f i~  "C~h)  = { [ ( U ' t  - U1)/R~]  - (~l~ - ~2)~,ffl  
f 

+ ,[(U2 U2)//R2] + (n', - f~,)',~22 ½(U; - U , ) e h ( , x ,  - ½1U2 - U,),~I,", :~¢, [4.5] 
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where differentiation is with respect to the variables ~, and 22. 
Substituting into the above expression the value of h(2,, 22) given by [2.2], one obtains 

(1/#)17" (h3V~a) = qr .  ~ [4.6] 

where £ = ( ~ ,  22) r and q is a vector defined by 

( 1 cos2 0 
- -  (~r~2 - -  ~"~2) + ( U I  - U 1) 2R, 2S, 

q=121  ( 1  sin2~ 
+la ' l  - n 0 + ( v ~ -  u2) ~ 2  2s,  

sin2  I si.0cos0(, ,)) 
oo: 1 sin oos (, ,) 

I - i v ;  - u , )  z 

[4.7] 

Changing to xl and x2 variables by means of the transformation [3.17], [4.6] becomes 

(0--~I L + 2,#~ + 222~) a 0#,3 + ~ (I + ).,#~ + z2x2) O-~2J; = (QI#, + Q=#2) 

[4.8] 

where Q = (Q1, Q2) is a vector defined by 

Q r = q r . A  or Q = A  r ' q  [4.9] 

and so by [3.44] for the matrix A, 

QI = ql cos I - q2 sin z, Q2 = ql sin X + q2 cos Z. [4.10] 

By making the further substitution [3.21], [4.8] may be written in terms of the : and 0 
variables as 

c~2pa 
(21 COS2 0 + ~,2 sin2 0 ) f 2 - ~ - +  2(22 -- 2x)sin 0cos 0:~/~:0 

2 - O2,0n ,,,. O~B 
+ (21 sin 2 0 + 22 cos 0 ) - ~  + (2 a sin 2 0 + 22 cos 2 vjr -~- 

+ 2(2, - 22)sin 0cos 0-~-  + ~1 + :2] (21 c°s20 + ;h sin2 0 ) - - ~  - 

[4.11] 

It will be seen later that one only requires the form of/~8 for large values of i so the limiting 
form of [4.11] for i --, oo may be taken, i.e. 

02/~a 
(21 cos 2 0 + 22 sin 2 0 ) f 2 - ~  + 2(22 - 2a) sin 0 cos 0e Of/~e0 

a 2 _ 

o2pn 
+ (21 sin 2 0 + 22 cos 2 0) ~ + {(62, + 22) cos 2 0 + (21 + 622) sin 2 0} i don 0~ 
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+ 4 ( £ 2 - 2 1 ) s i n 0 c ° s 0 7 - 0 - = # i - 3  i ) - ~  c ° s 0 + t / . 2 ) ~ s ' n 0 '  • [4127 

In a manner similar to that for/~A (see §3), it may be shown that for satisfactory matching 
onto the outer expansion one requires/~ to satisfy 

/~ = O(r-3t as r-~ ~/.. [4.13] 

It may readily be shown that the solution of [4.12] satisfying [4.13] is 

/)n = - ~ l l f - 3  cos0 + sin0 ' [4.14a1 
_ ).11'2(3 2,;~2) 2~'2{2,;.1 + 3,;- 2) 

Due to the approximation made in [4.12] that p: was very large, [4.14a] for fin gives really 
the first term in the asymptotic expansion of/~n for large f. Also since the walls given in 
[4.1] and i4.2] possess errors of order a 1/2, so does/~n. Thus 

]~B = --  ~ - / - / i -3  COS() + + O ( f  - 2 )  + O l a  1 2L 
+ 2)-21 /'2' (~AI + - / ' 2 1  . 

i4.14b~ 

By replacing ~1 and ,i 2 by -:('1 and - - i  2 respectively or equivalently 0 by (n + 0), the 
value of/~s becomes -/~B. Also such a substitution into [4.3] shows that (OB)I and {0B) _, 
remain unchanged. By making use of these symmetry properties of the flow, the force 
F 8 and torque GB on W resulting from the flow (uR,/~B) may be calculated from [3.333, 
[3.34], [3.37] and [3.38] as 

f S (  X lPB ~'(~IB)I' (F")I : , RI + ~ ~ ]  dYl dye + ,I](F,) + O(a1'2), 

(F,)z = fs ( -  ~2P'" + l~(fis)Z] d:~a d~2 +12(e) + O(aLZL 
.~ R2 OY3 l 

(F8)3 = O(ln a) [4.15] 

and (GB) 1 = f [-- . ' (2/)B)d-{1 d-~ 2 + gl( l ' )  + 0(a1'2}, 

(GB) 2 = f (+:Cl/)n) d'~' dx2 + g2(e) + 0(a1'21, 

(Gn)3 = O(a°). f4.16] 

That (Fn)a is of order In a rather than a ° follows from the fact that the error term of order 
a ~/2 in/~B behaves like f -2 as f --* zc giving a logarithmic singularity for the integral for 
(FR) 3. Substituting the values of (finh and (t~n) 2 into these expressions from [4.3] and 
changing to the ~, and "~2 variables, one obtains 

f s [  /~, ~ ~ ( U ' l -  UI) (Fa) 1 = ~ - ~ ( x l c o s z + i 2 s i n ~ 0 +  h 
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- -2 h cos ;~-~1 + sin Xox21d dYq dY% + fl(e) + 0{al/2)~ 

, (  o:. o:.ll - - h  - s i n x  + cos d£, di2 + f2(g)+ O(al/2), 

(Fs) 3 -- O(ln a). [4.17] 

and (Ga)i = f - f fa ( -x l  sin X + ~2cos %) d~1 d~2 + gl(e) + 0(al/2), 
~s 

(Ga)2 = ~ +/~a(xl cos Z + x2 sin Z) dxl dx2 + g2(e) + 0(al/2), 
.,$ ¢ 

(Ga)3 = .O(a°). [4.18] 

These integrals may be evaluated by changing from xl and x2 to : and 0 variables and 
by substituting the value of Pa from [4.14b]. The region of integration S~ in terms of the 
: and 0 variables is 

0 ~ I ~ ~ a-1/28 0 _< 0 _< 27t [4.19] 

SO that upon performing the 0 integration the above expressions for F B and GB become 

r . a -  l / 2eF  ~ 1 r ) / / r -  / Qlcosz Q2sinx 4(U'~- u~): 
(F.), = ) n #  Jo L ~  ~,~1(-~ - +" 2-22) + 22("~1 ~+ 3'a'2)I + (1 + :2) 

.,_,f QlCOS~ Q~si~x }] _ 
:-3(1 + r J~(3~ + 222) + (22, +-~-2) (2,2=) '/=de + f,(e) + O(a~/2), 

1 f~-'a'r:-'[ Q, sin x ~,c+s32 } 4(U'2-U2): 

Q, sin;{ Q2 cosx )-] 
: - ' "  + : )  (321 + 2~) + (22, +~L.)}_] t~*2~)-''~ d: +.:,(~) + Otala), 

(Fa)a = O(ln a), [4.20] 

and (Gsh = 21 {Tr# Q1 sin g Q2c°sx~(A122)-l/2fo-:-ld:'/2r 
21(321 + 222) + :.2(221 + 322)J 

+ gl(e) + O(al/2), 

1 f Q, cos~ Qasin:t ] l"- ' /"  
(GB)2 = - g  7tl*~2,'-4-7--7g~:) a ( wa,-r,~,~2 + 22(221 + 322).( (2'22)-1/2 Jo : - l d :  
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+ g2(e,) + O(aU2), 

(Gs)3 = O(a°)" [4.21] 

Actually, the term r'-~ in the integrands in the above equations are correct only in the 
limit f ~ zo (since ,5 B was obtained from [4.12] rather than the complete [4.11]) and they 
really have no singularity at f = 0. However the logarithmic singularity at ~:~ ~:, 
allows one to proceed as for the calculation of (G,0s given in §3, to obtain the asymptotic 
forms of F B and GB as 

a)4()~ ~ [ (3~  +222)(R~-1  - -  l) 
(F~h = - v ( l n  12,) 1/2 Q1 cosz  1 

+ 4(U' 1 - U1) 1 "{- 0(~/0), 

x [ Q l s i n z ( 1  
(Fs)2 = -/~(1n a) 4(2122)1/2 (321 + 2).2) R ~ I  - 

+ 4(U~ - U2)] + O(a°), 
_A_ 

(FB) 3 = O(ln a). 

QEsinz ( 1 )  
+ (221 + 322) R1)~2 1 

) ~2 cosz  ( 1 1) 
1 + ( 2 ) . 1  + 3 z 2 )  R ~ ) . 2  - 

[4.22~ 

and 
(Gsh = 21(321 + 222) + 22(221 + 322) 

. {  ,cos  e si_nz 
(GB)a = +~(1na)4(212:)1/2 + 21(3), 1 + 222) + 22(221 + 322) ) 

(GB) a = O(a°). [4.231 

If the surfaces W and W' are locally symmetric so that they are given by [2.2b] and [2.3bj 
then FB and GB are as given above except that ( F s )  3 is no longer singular, being of order 
a °. The quantities Q1 and Q2 in [4.22] and [4.23] are functions of UI, U2, U'I, U~, ~ i ,  
t22, f2'1 and f~  and are given by [4.10] and [4.7], i.e. 

QI = ql cos z - q2 sin X, Q2 = ql sin x + q2 cos z [4.24! 

{ ( 1 cos2, s n2 / 
where ql = 12 - ( ~ 2  --  ~')2) + (U'I  - U I )  2R 1 2S 1 2S 2 ] 

- ( u ~  - u 2 )  2 - ' 

{ (' 
q2 = 12 +(if1 - ~1) + (U~ - U:,) 2R2 

sin2  
2Si 2S2 J 
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- (U'I - U l )  2 - " 

5. ROTATIONAL MOTION OF SURFACES ABOUT NORMAL 

The flow field (tic,/~c) resulting from the ro ta t ional  mot ion of the surfaces about  their 

mutual  normal  is now considered. Such a flow field is that produced by the components  
D 3 and D~ of f l  and fl ' ,  there being no translational mot ion of the surfaces. Taking k = 1, 
the boundary  condit ions [2.30] and [2.31] for (il c,/~c) become 

(/~C)I ---~ --[~39~2 ~ (/~C)2 ~ ÷~"~39~I, (/'~C)3 ~- 0, on -~3 ~-- 0, [5.1] 

and (tTc), = -D~-~2, (~c)2 = +D~.~; (t~c) 3 = 0, on -i3 = h(.~, -~2). [5.2] 

Since (tic, Pc) satisfies also [2.22], one may proceed as in §3 for (tA, /~,0 and in ~ for (uB, Ps). 

Therefore one may obtain 

PC m :C(~'I, 9~2) 

(~c)1 = (2/~)-~(C~:c/,~)x~ + A . %  - D3.% 

{ac)2 = t2u)-~{~:c/~Yc2)g] + B~3 + D 3 ~ ,  

( : c h  = - t6/~)-  ' (~%/~:z~ + ~'p~/o:z~)~z 3 - ½(,~.4/o~z, + OB/,~,h).~] 

-(2#)-1(.~,/Rl)t~ffc/c~£1 + (.~2/R2)cO:c/O.~2)X 2 - ((A/R~)X 1 + (B/R2).~2).~ 3, [5.3] 

where A and B are functions of.£~ and :~2 and are given by 

A = - (2#) -~( i~pc / t~£~)h  + (Q3  - ~'~3)x2/h* B = -(2p)-~(C~pc/ t~g2)h - (fl 3 - D'3)X~/h. 

[5.4] 

By making use of the boundary  condit ion [5.2] for (Uch on .~a = K one obtains an equation 

for Pc which may be written as 

(1//a)~" (h3~/5c) = (f~a - D'3J{6(x~(t~h/?xz) - x 2 ( t ~ h / c 3 " ~ )  ÷ 12(1/Rt - I/R2)xF~z}. [5.5] 

With respect to the ~ and ~2 variables, this equat ion may be written as 

i/u{t~/t~.~i[( 1 ÷ ).,.~2 ÷ f,2.~2)3(t~pc/t~.~)] ÷ t~/t~.~2[( l ÷ ,,; ~2 + )~2.~2)3~pc/6~.~2]} 

= 12(D3 -- D3)[(22 -- / q )£~£2  + (1/R~ - l/R2) { _~2  sin ;f cos X 

÷ 9~1"~2( cOS2 ~( - -  sin2 Z) + ~2 sin Z cos ;(}]. [5.6] 

By means of  [3.21], this equat ion may be written in terms of f and 0 as 

(,;.~ cos 2 0 + 22 sin 20)f2(~2ffC/~f2 ) + 2(,;~ 2 - -  21)sin 0cos  Of(~2~c /~:  00) 

+ (2~ sin 2 0 + 22 cos 20)(t~2~c/c~O 2) + (21 sin 2 0 + 22 cos 20)f(t~ffc/C3f ) 

+ 2(,;.~ - ) .2)s in 0 c o s  O(d~c/O0) + ( 6 f a / 1  + f z ) ( , ~  c o s  2 0 + ,;-2 s i n 2 0 ) ~ c / ~ :  

+ (6f2/1 + :2)(,;. 2 - 2~)sin 0 cos O(t~:c/00) = [12/~:4/(1 + f2)a](Da - D~) 

[(:-2 - 2~)sin 0 cos 0/(2~.2) ~/2 + (1/R~ - I/R2) { - ( s i n  ;f cos ~f cos ~ 0)/:.~ 
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+ [( cos2 Z - sine ZJS in 0 c o s  0 ] / ( / . 1 ) . 2 )  1 2  -~- (sin Z cos 7. sin 2 0)/)-2',]. [5.7i 

It may  be shown that Pc. for sat isfactory match ing  onto  the outer  expansion must sat is~ 

the condi t ion 
tc = 0(~-21 as i: ~ -l .  [5.8] 

By letting ? --, m in [5.7], it may  be shown that the first term in the asympto t ic  expansion 

of Pc for large t: is of  the form 

Pc = k t;  2( A' sin 20 + B' cos 2t) + C'I. [5.9) 

where A', B' and C' are given by 

t ) . ~ + - ~ -  v . - : - F v  + 

B ' - -  + ;.t5.2 " + I s i n z c o s  Z. 

C' = 2().1 + ;.2t R~ R~ - sin Z cos Z. V5 100 

F rom [3.33], [3.34], [3.37] and [3.38] with k = 1, the value of the force Fc and torque G c 

on W resulting from the flow {tic, tic) is 

O(a°L (Fc)2 = O(a°)" (Fc)-~ = - f t c  d.~ d.'~ 2 + 1(~:) + O(a + 1 ~5.1t] (FC)l 
" S  , c  

and Gc  = O(a°} as a ~ 0. [5.12] 

where f ( c )  may  be singular as c ~ 0. Changing  to t:. 0 variables, the above expression for 

(Fc)3 becomes 
t "  a 1,2: / .  27r 

-- - ' 2 1  / + 1t , + t s , : l  (Fc)s 

Substi tut ing the asympto t ic  value [5.9] of Pc into this equat ion and performing the inte- 

gration,  one obtains  

(Fc) 3 = ~laC,[).l).2). 12 In a + O(a°l as a ---, -J. ~5.14] 

Hence, upon the subst i tut ion of the value of C' given by [5.10!, the value of (Fci~ may be 

writ ten as 

3re f g _  ( 1  R,  /~2 1 )  ( )~1- / '2)  " . . . .  s m ~ c o s z  + O(a°). [5.15] (Fc)3 = # ( l n a ) 2 ( ) ~ : )  l / j t z  t/~2 3 n3) 

6. RESISTANCE MATRICES FOR SURFACES 

The results for the force and torque on the surface Was calculated in Sections 2 5 will now 
be combined  into a single relation. Since the forces and torques were calculated on the basis 
of the creeping mot ion  equations,  the relation between these forces and torques and the 
velocities and angular  velocities of W and W' must  be linear. Hence if we define a six 
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dimensional force vector 9 acting on Was 

9 = V,. F,. F,, G,, G,. G,)’ i6.I 1 

and sixdimensional velocity vectors v and v’ for the surfaces Wand W’ as 

v=(U,,u,,U~,R,.Rz.RJ)7, v’ = (Vi. u;. u;.n;,n;.n;,* [6.2] 

then there exists (6 x 6) matrices X and X’ such that 9 is given by 

.F = -g(X-.v+ *Jr’.v’). 16.31 

This type of six dimensional representation was used by Brenner (1964, 1066). 
An examination of the results [3.53], [3.54], [4.22]. [4.23] and [5.14] shows that the 

velocities U and U’ and angular velocities R and R’ of the surfaces Wand IV’ occur only 
as the quantities (U’ - U) and (R’ - 0). Hence to the order considered 

. 
.X’ = -x L6.41 

so that .F = -@r.(V- v’). [6Sa] 

However it must be noted that [6.4] applies only to the order considered and does not 
apply. for example, to terms of order (a’) in the asymptotic expansion for small a. Thus 
for a + 0 

LF = -@.(v- v’) + O(aO) [6.5b] 

where X tends to infinity as a + 0. 
If v’ = 0, then X is the singular part of the (6 x 6) resistance matrix for the surface W 

in the presence of W’. It was shown by Brenner (1964) that the resistance matrix for a body 
is symmetric, therefore 

.X=‘XT L6.61 

where XT is the transpose of X. 
The 21 independent components of X may be found from [3.53], [3.54], [4.22], [4.23], 

[S. 111, [5.12] and [5.153. These results may be simplified considerably by using the relations 

Le.71 

I., + 1, = IIZR, + 1/2R2 + 1/2S, + l/ZS,, [631 
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which have been derived from [3.12], [3.13], [3.14] and [3.45]. 
T h u s  the  c o m p o n e n t s  o f  o F  are g iven  by 

n [ 3 c o s "  Z(I - R1,:.112 
.*,, = - ( I n  a)(2/),~L,2Rj2 (32, + 2~.,i--/.-~ + 

n [3s in2 Z(I - -  R2]',II 2 
• *22 = -{Inalt/.,),,)-~eR{ (3/., +2),2);,~ 

3n 
* ' 3 3  = (a-1)(21-),2)1/2("[i -1- *;.2J @ O [ a  i 2j 

3n s i n z c o s  z ~(1 - R12~)(l - R2,:, l) 
- / / ,2 = - * 2 !  = + ( l n a ) 0 - ~ ( / ~ R ~  L i32] +2;'.2i)'.~ - - 

.'g]s = .*31 = O(ln a) / /23 = a 3 2  = Olin a) 

./]744 = - - ( In  a) - - -  

-*  55 = - ( I n  a) - -  

.if 66 ~--- O[ aO} 

3n ~ sin2 Z 

(2122) ̀:2 Li-35. 7+~2)]7i,;, I 

3n [ co s2 X 

(/.,>.2) ''2 U3;.; + 2~2),;., 

cos~- Z 

+ d).1+ 37.,i;, [j 

+ (221 + 3 / , 2 1 2 2 .  ] 

.,2 ] 3s in :z{ l  - RI/., + R~ 

(2,:.) + 3,;._,b;,, 

3c°s2 zll - R2)'2)2 2] I 
+ 125-1 + 3'~'2})'2 + R 

11 - R1),2)(1 - R2].2) ] 

I2;., + 3522i)_,- ] 

3n sin Z cos ;( 
-]//45 = -*54  =- + ( I n  a) 

-~¢46 = . * 0 ,  = O(a°), 

• * 1,, = -;#41 = +t in  a) 

• *25  =->f52 = + ( lna )  

.;¢36 = ./Y63 = +(In a) 

• ] ¢ {  1 5 

[ 1 1 ~] 

(~1~.2) 1/2 {32, + 222)21 + i})., + 3 2 2 i 2  
i 

-*56 = .~ os = O(a°) 

3 n s i n z c o s z [  ( 1 -  R,2 , ,  ( 1 -  RI]'. 2) -1 

3 n s i n z c o s z [  (1 - R2/.,) (1 - R222j 

,) 
2(a lZ  2) \ 5 - 1  + 22/ . 

"'1~ 24- 

"/g t6 = "h/' 6x = Oia°) ,  

• -g3a = . * 4 3  = O(ln  a), 

R,>.,i 
= - * 5 ,  = +(lnaj(/,,,;o2)12Rl L (3"-1 + 2";-2}-;]1 

3z [s in  z ~ 1  - R 22, t 
= -*~a2 = - ( I n  a)(2,22),:2R 2 L (32t + 2-)~,;~ 

"J{26 =- ")~/'b2 ~--- O(a°), 

.-:e35 = -"¢ 5a = Olin a). 

sin: Z(I -- R~22t] 

+ (22j + 322122 ] 

COS 2 Z[I ~ R2/ '2}]  

+ 12,:,~ + 3,~,2)).2 J 

[6.9] 
T h u s  of  the 21 i n d e p e n d e n t  c o m p o n e n t s  of  ,-go, 16 are s ingular  as a --+ 0 and of  these 12 
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have been explicitly calculated while the other 4 (namely ~13 ,  Jr23,-av43 and .gs3) 
would require the knowledge of the terms of order r 3 in the forms of the two surfaces given 
by [2.2a] and [2.3a]. The remaining 5 components (namely ar'l~, ~26,  ~",L6, ars6 and 
Jt~66) are never singular as a - ,  0 and their calculation even to the lowest order in a would 
require the complete outer expansion and would thus require knowledge of the entire 
particle shapes. However for locally symmetric surfaces W and W' of the forms [2.2b] 
and [2.3b] the values of ~f  are as shown above except that: 

(i) '~'33 as shown has an error of order (lna) instead of order (a- ~/2); and 
(ii) .Yg13 = ~t'31, ")[/'23 = ')[(('32, " ~ 4 3  : ~ 3 4  and ~ 's3 = ~'35 are no longer singular, 

being of order a °. 

In order to find the force and torque about O' acting on the surface W' one merely has to 
interchange the roles of W and W' in the preceding theory. 

7. TWO SPHERES ALMOST IN CONTACT 

As an example of the use of the results given in the previous section, we consider the sur- 
faces Wand W' being respectively that of spheres of radii R and S (see figure 3). It is assumed 
that the sphere W' is at rest and that W is undergoing a given motion. Hence 

R I = R 2 = R, $1 ~--- $2  = S [7.11 

and v' = 0. E7.2] 

The six dimensional force vector ~g" is then given by [6.3] as 

= -#.;F.v + O(a°). [7.3] 

The angle ~b may be taken to be zero, the matrix K given by [3.12], then being 

K=(1/2R + I/2S 0 ) .  
0 1/2R + 1/2S E7.4] 

2 

Figure 3. Two spheres almost in contact. 
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The eigenvalues of K are then 

21 = 22 = I /2R  + 1/2S, [7.5t 

the corresponding eigenvectors being indeterminate. Thus X is also indeterminate and may 
be taken to be zero. The components of ~¢~ given by [6.9] may then be written as 

2rtRS [ 3 ( S -  R) 2 I1 0F22 = - ( l n a ) ~ l ~ -  ~ + g)2 + ' "~33 = + ( a - ~ )  6nR2S2 ,)~r i 1 (R + S) - - - - - - 5  + O(ln a), 

24nR3S 3 
')F44 = J{55 = - ( In  a) 5(R + S) 3' • ~15 = ,Y51 = +( lna)  

1 2 r t R 2 S Z { S -  R) 

5(R + S} 3 

fft'r24 ----- fft'r42 = -(In a) 
12rcR2S2(S - R) 

5 ( R  + S)  3 
I7.6] 

all other components being non-singular. 

For the special case of S = ~ ,  the wall W' becomes a plane surface and the problem 
reduces to that of the motion of a sphere almost in contact with a plane wall. The above 
values of the components of #{ then become 

~/ '11  = ~ 2 2  = - ( In  a)16nR/5 ,  

f i r 4 4  = '~t/'55 ----- - - ( I n  a)24rcR3/5, 

'~( '33 = + a  -16rtR2 + O(tna), 

'~('15 ~--" '~¥51 = --~)[/ '24 = -- ' )~/ '42 ~--- +(In a)12rtR2/5. 

I7.7] 

Thus by [7.3], it is seen that the force F and torque G exerted on the sphere is given by 

F1 = #(ln a)R(4n/5) (4U1 - 3R~2), 

F 3 = - / a a -  1R267zU3 + O(ln a), 

G 1 = #fin a)R2(12n/5) (U2 + 2Rf~l), 

G 3 = O(a°). 

F2 =/~(ln a)R(47t/5)(4U 2 + 3Rf~l), 

G 2 =/~(ln a)R2(12x/5)(  - U 1 + 2RV~2), 

[7.83 

If these equations are expressed relative to the sphere centre rather than the contact point, 
they become identical with the results for this particular case as calculated by Goldman, 
Cox & Brenner (1967). 

Considering the special case for which the radii of the spheres W and W' are equal so 
that R = S, the components of dr  given by [7.6] become 

of-11 = 0¢-22 = - (In a)nR,  ,)~z'33 = + a -  x(3nR2/2) + O(ln a), 

o'utr44 = a~¢'55 = - ( l n a ) 3 n R 3 / 5 ,  .9r15 = 9¢"51 = ~ '24  = /;f42 = O, [7.9] 
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so that the force F and torque G exerted on W are given by 

F l = #(ln a)nRUl,  F 2 = #(In a)nRU 2, 

F 3 = - # a -  l(3n/2)R2U3 + O(ln a) 

G 1 = #(ln a)(3rr/5)R3f~t, G2 = #(In a)(3n/5)R3~2, Gs = O(a°). [7.10] 

These results, when expressed relative to the centre of sphere W as origin, become identical 
with those given by Zia, Cox & Mason (1967) in their discussion 6f the behaviour of a chain 
of spheres in shear flow. Furthermore if one considers the tangential motions of one sphere 
near a second sphere at rest, the spheres having unequal radii, then the forces and torques 
on the spheres derived from [7.6] may be shown to be in agreement with those obtained 
by O'Neill & Majumdar (1970). 

As another illustration of the use of the above theory, the force and torque on a sphere of 
radius R (with surface W) moving close to a fixed circular cylinder of radius S {with surface 
W') may be calculated. Taking axes such that the 1-axis is parallel to the cylinder axis with 
the 3-axis normal to the surfaces at O (so that the situation is the same as shown in figure 3 
except the sphere of radius S is replaced by cylinder with axis parallel to l-axis), the radii 
of curvature are R 1 = R 2 = R, $1 = oo, S 2 = S with ~b = 0. Thus matrix K given by 
[3.12] is 

whose eigenvalues are 

K = 1/2R + 1/2S 

21 = 1/2R, 

with corresponding eigenvectors 

22 = 1/2R + 1/2S 

ThusmatrixA--(  giving -- 0 Sincothecy,i der W isatrest -- 0giving the 

6 dimensional force ,~- on the sphere as 

,~ = - # . ~  .v + O(a°), [7.11] 

where the matrix .# ,  determined by [6.9], is given by 

' / 2 ( R  + 4 S  I -#'11 = "(In a)4nRISli=,_ 
IR+SI 12-g + -5S I 

4rrRlSll/2 (3R2 + RS + 4S 2) 
• ~22 = - ( In  a)iR + SI 3/2 3R + 5S " 

")((" 3 3 a- 1 12IR21S[ 3/2 
= + O(ln a) 

IR + SI1/2(R + 2S) 
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24rcR31SI 5i2 
";¢'4,~ = - ( I n  a) 

[R + $13/2(3R + 5S)" 

24rtR31Sj 32 
• ~.~5 = - ( I n  a) 

IR + S] ~ 2(2R + 5S}" 

121rR2[Si3 2 
• ~"~5 = "~_~1 = {lna) 

IR + St ~ 2(2R + 5S)" 

- t i n  all2rtRZlSI3'2(S - R) 
")f2,* = "Yf42 = 

[R + S13/2(3R + 58) 
[7.12] 

all other components  being non-singular. These results are valid for the sphere either outside 
(S > 0) or inside (S < 0, R + S < 0t the cylinder. 

8. DISCUSSION OF RESULTS 

The "lubrication" theory described in the previous sections gives the singular nature as 

a ---, 0 of the force and torque exerted on the surface W (with [2.2b]) which is almost in 

contact with the surface W' (with [2.3bt} at a point O, the two surfaces having prescribed 
motion. 

Thus relative translational motion of the surfaces in the direction of their normals pro- 

duces a normal force or order a -  ~ and a normal torque of order (ln a) on the surface W. 
Also tangential components of velocities and angular velocities of the walls produce a 

tangential force and torque on W of order (In a). Relative rotation of the surfaces about 

their normal produces a normal force on the surface W of order (ln a). Also, in general, 
tangential components of velocity and angular velocity can produce a normal lift force of 

order (In a) and a normal velocity produce tangential components  of force and torque of 
order (In a). Although these components have not been determined here their values, which 

depend on the gradient of surface curvature, have been shown to be no longer singular 

if the~surfaces are locally symmetric. 
The results may be used, for example, in investigating the sedimentation of a particle 

which is almost in contact with a vertical wall. Thus if one considers a uniform sphere 
sedimenting as a result of a force IF, 0, 0) acting at its centre [see figure 4), it is seen that 

since this external force and torque on the body must be balanced by the hydrodynamic 

force and torque given by [7.8], one must have 

- - F l  = IAlnaJR(4r~/5)(4U1 - 3Rf~2), F I R  = ~ ( l n a ) R 2 ( 1 2 r t / 5 j ( - U 1  + 2R~2) ,  [8.1t 

where U~ is the velocity of the sphere at the contact point O. Thus 

U1 = - 3Rf~2, [8.2i 

and if one denotes the 1-component of the velocity at the sphere centre as U* so that 

U~' = U I  - R f ~ ,  [8.31 

then U*/(RPI2) = - 4 ,  [8.4i 
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Figure 4. Sphere undergoing sedimentation near a vertical plane wall. 

which gives the relationship between the translational velocity and angular rotation of the 
sphere when the gap a is very small. Also 

F F 
f~2 = 12n/~RZ(ln a)' U* = 3rt/~R(ln a) [8.5] 

from which it is seen that as a ~ 0, both f12 and U~' tend to zero like (In a)- t. However 
as pointed out by Goldman, Cox & Brenner 11967), the theory may no longer be valid if a 
is too small due to surface roughness effects, Non-Newtonian fluid effects or to the effect 
of cavitation taking place in the gap. It should be noted that very high pressures are 
produced in the gap, these being for the general case, of order a - 2  for relative normal 
translation, of order a-3/2 for tangential relative motion and of order a - l  for relative 
normal rotation of the two surfaces. For the corresponding two dimensional problem of the 
motion of a circular cylinder almost in contact with a plane, high pressures are similarly 
produced in the gap (Pinkus & Sternlicht 1961). 

The general results given in §7 may in a similar manner be used to investigate the motion 
of a non-spherical particle undergoing sedimentation near a plane wall or the relative 
motion of two such particles under the action of external forces (such as electrical forces) 
in a fluid at rest. The motion of a sphere near a fixed cylinder may be obtained by the use of 
[7.11] and [7.12] and may form the basis of a model for the motion of a particle in a fibrous 
filter, or for the motion of a sphere undergoing sedimentation in a cylindrical tube. 

In fact if U* is the velocity of centre and fl~ the angular velocity of a uniform sphere of 
radius R undergoing sedimentation inside or outside of a vertical circular cylinder of 
radius S it may readily be shown from [Z12] that the equations analogous to (8.1) for this 
case give 

U'~ [4 + R/S] 
~ ' z  = - ~ ~ - S t  [8.6] 

where for the sphere outside the cylinder S > 0, and for the sphere inside S < 0. Note that 
for this latter case, the value of U*/Rf~2 increases as R increases and tends to infinity as 
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R/S ~ - 1, at which stage the theory is no longer valid since one almost has line rather 
than point contact. 

Further applications of the general results given in Section 6 include problems in which 
the two surfaces involved are: 

(a) two cylinders with axes in arbitrary directions, 
(b) a plane and an axisymmetric body with fore-aft symmetry (e.g. spheroid, torusl with 

axis parallel to the plane, 
(c) two such axisymmetric bodies with axes parallel, 

(d) a circular cylinder and an axisymmetric body (with fore-aft symmetryt with axis 
perpendicular to cylinder axis. 

Also the partial solution to problems involving two completely arbitrary smooth bodies 
may be found. For example: 

(a) If U 3 << U l, U 2 (e.g. an arbitrary body undergoing sedimentation near an inclined 
plane not nearly horizontal), the U1, U2, f~ ,  f~2 can be found if forces and torques 
are given (leaving only U 3 , f~  unknown). 

(b) If U3 is of order U~, U2 (e.g. an arbitrary body undergoing sedimentation on a nearly 
horizontal plane), U3 may be found. 

(c) If body rotates about the 3-axis alone, F 3 may be found. 

(d) If body translates along the 3-axis alone, F 3 and G 3 may be found. 
(e) In any motion for which U3 = 0 the quantities F~, F2, G~ and G2 may be found. 
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Sommaire--Les forces et les couples agissant sur deux particules solides en mouvement suspendues 
dans un fluide et presque en contact l'une avec rautre (ou sur une particule presque en contact 
avec une paroi) sont trouv6es en fonction de leur mouvement relatif en utilisant un type de th6orie 
de lubrification, les r~sultats ainsi obtenus ~tant asymptotiquement valables pour des espaces de 
faible grandeur. I1 est suppos6 que les surfaces des particules impliqu6es, si elles sont rapproch6es, 
sont relies que le contact aurait lieu ~t un seul point auquel les courbatures de surface sont d6finies. 

Auszug--Die Kr~ifte und Drehmomente auf zwei sich bewegende feste Trilchen, die in einer 
Fliissigkeit schweben und sich beinahe beriihren (oder auf ein beinahe eine Wand beriihrendes 
Teilchen) werden in Bezug auf ihre relative Bewegung mit einer Art Schmiertheorie gefunden, 
und die so erhaltenen Ergebnisse sind asymptotisch fiir kleine Liickenbreiten gfiltig. Es wird 
angenommen, dad die Oberfl~chen der betroffenen Teiichen im Falle eines Zusammenkommens 
derartig sind, dab Beriihrung an einem einzelnen Punkt erfolgen wiirde, an dem Oberfl~ichen- 
kriimmungen endlich sind. 

Pe31OMe---l-IpH IIOMOIII~ MO~eJIH TeopHH CMa3KH Hamym c TOqKH 3peltHs OTHOCHTeYlbHOrO 
~BHXeHH~I nBHXyU~y~o C~L~y H KpyTJlll~ee ycHnHe ~Byx nepeL(BHFalolliHxc~i TBep~blX qacTHII, 
B3BemeHHbiX B XH~KOCTH H HOtITH qTO conpHKaca10uiHxcA ~pyr c ~pyroM (F.~R qaCTh'lYJd, 
KOT0Pa~ FIOtlTH qTO COrlpHKacaecTJl co CTCHO~). 1-10ny~eHHi~e TaKHM o6pa3oM pe3yJTbTaTbl 
oKa3a~Hcb aCHMHTOTI~eCKH HpHMeHHMId .~rlA HeHIHpOKHX 3a30poB. Hpe~mnara io r ,  ~TO 
eC~H HoBepxHOCTH pacCMaTpHBaeMMX qaCTHU CTOJIKHyTC~I, TOr~a KOHTaKT FipOH3OA~eT 
TOYlbI(O B TOl~ odno~ TOqKC, F~e KpHBH3Hbl rloBepxHOCTeR ~HHHTHblC. 
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