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Abstract—The forces and torques on two moving solid particles suspended in a fluid and almost in
contact with each other (or on a particle almost in contact with a wall) are found in terms of their
relative motion by using a type of lubrication theory, the results so obtained being asymptotically
valid for small gap widths. It is assumed that the surfaces of the particles involved if brought together,
are such that contact would occur at a single point at which surface curvatures are finite.

1. INTRODUCTION

Goldman, Cox & Brenner (1967), following the earlier work by O’Neill (1964) and by
Dean & O'Neill (1963), investigated theoretically the slow motion of a solid sphere through
a viscous fluid near a plane wall. Translation of the sphere parallel to the wall and rotation
of the sphere about an axis parallel to the wall were considered. It was assumed that the
fluid was at rest at infinity and that the fluid inertia was negligible in comparison to viscous
effects so that the creeping motion equations were valid. These equations were solved by
expressing them in terms of spherical bipolar coordinates. However the numerical computa-
tion of the “exact” solutions obtained, converged poorly if the gap width, a between sphere
and plane became very much smaller than the sphere radius R. Thus in order to obtain
exact solutions for such cases, Goldman, Cox & Brenner (1967) developed a lubrication
theory which gave the force and torque on the sphere which was asymptotically correct
for small values of the ratio a/R. Such asymptotic results agreed favourably with the
“exact” solutions for the smallest values of a/R calculated. O’Neill & Stewartson (1967)
obtained a more accurate solution asymptotically correct for small a/R by matching the
lubrication theory valid within the gap onto an outer solution valid elsewhere obtained
using tangent sphere coordinates.

The present paper extends the lubrication theory to obtain the forces and torques acting
on any two solid surfaces separated by a viscous fluid, the surfaces being such that if they
were to be brought together, contact would occur at a single point only. The forces and
torques on the surfaces are found as the leading terms of asymptotic expansions valid for
small gap widths. From such results the asymptotic forms of the resistance matrices for
the surfaces are found. These results are then applied to the problem of calculating the
forces and torques on two spheres (of unequal radii) almost in contact and on a sphere and
cylinder almost in contact. In the former case, when the radius of one sphere tends to
infinity the results reduce to those given by Goldman, Cox & Brenner (1967) whereas for
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the case in which sphere radii are equal, the results reduce to those given by Zia. Cox &
Mason (1967). Also for the tangential motion of two unequal spheres. the results of O'Neill
& Majumdar (1970) are obtained.

The implications and uses of this type of lubrication theory are discussed in the final
section.

2. METHOD OF SOLUTION

Consider two particles suspended in a fluid of viscosity g such that their surfaces W
and W’ are almost in contact and are such that if they are brought together. contact would
occur at a single point at which the principal curvatures of both surfaces are finite. It is
assumed that both surfaces are rigid and that their minimum separation distance. . is very
much smaller than the radii of curvature of the surfaces at the point of minimum separation.
It is assumed also that both surfaces W and W' move in some prescribed manner and that
it is required to find the forces and torques acting upon each of the surfaces as a result of this
motion. The fluid in the gap between the surfaces is assumed to be incompressible and
Newtonian and the Reynolds number for its motion so small that inertial effects may be
neglected. The fluid velocity u and pressure p then satisfy the creeping motion equations

uViu — Vp = 0,
V-u=0 (2.1]

with given values of u on the surfaces Wand W’. Rectangular Cartesian axes (x,. x,. x;) are
taken with origin O in the surface W at the point of minimum separation of the surfaces.
The x; axis is taken to be normal to the surface Wand hence also to the surface W'. The
x; and x, axes are then chosen as tangents to the surface W in such a manner that they lie
in the directions of the principal curvatures of the surface W at 0. The surface W itself may
then be written as

Xy = —(x32R)) — (x3/2R,) + O(r?), [2.2a]

for small values of r = (x; + x3)' . where R, and R, are the principal radii of curvature
of the surface W at 0. However if the surface W is symmetric in the ‘sense that in [2.2a] the
value of x; remains unchanged if x, and x, are replaced by — x, and — x, respectively, then
the equation for the surface W must be of the form

Xy = —(x32R,) — (x2)2R,) + O(r). [2.2b!

While the leading terms of the asymptotic forms of most of the resistance coefficients can
be found for the general form of surface [2.2a], there are some which become singular for a
surface of type [2.2a], even though they are non-singular for a surface of type [2.2b]. These
latter values will not be calculated here since their evaluation requires knowledge of the
O(r’) terms in [2.2a). There are still other resistance coefficients which are never singular
and their calculation will be shown to require knowledge of the complete particle shape and
not just the form of the surface taken near the point O.

A new rectangular Cartesian coordinate system (x¥, x%, x%) is now chosen in such a manner
that its origin O’ lies both on the x;-axis and the surface W’. The x% axis is taken to coincide
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with the x, axis and the x¥ and x% axes chosen so as to lie in the directions of the principal
curvatures of the surface W’ (see figure 1). The surface W’ may then be written as

x} = (x1%/25,) + (x37/25,) + O(r*?). [2.3a]

for small values of r* = (x*¥2 + x*2)*'2, where S, and S, are the principal radii of curvature
of the surface W’ at O'. If this surface W’ is symmetric so that replacing x} and x3 by —x¥
and — x¥ leaves x% unchanged, then the surface W' is of the form

x¥ = (x¥?/25,) + (x3%/2S;) + O(r**). " [2.3b]

Let ¢ be the angle between the x, and x} axes (x, axis to the x¥ axis in the positive sense).
The x*, x¥, x% coordinates are then related to the x,, x,, x; coordinates by the relations

x¥ = X, cos ¢ + X, sin @, x3 = —x,sin¢ + x,cos ¢ x¥=1x3—a [24]

so that the surface W’ given by [2.3a] is rewritten in the form
sinf¢  cos’ ¢

2 in2
o , [cos* ¢  sin’ ¢ (l_l)_ )
X3 =a+ xj (———251 + 35, + XX, —Sx -—SZ sin ¢ cos ¢ + x3 ——25—1 + %,

T+ 0(r). [2.5]

Ifu = (u,, u,, u;) relative to the x,, x,, x; axis system then [2.1] is written as

(az+52+52) » _, (a’-+az+az »_,
—_— — 4+ — —— =0, —_—t —+—u, —— =0,
# éxd o axi 03 . 0x, # oxt | oxk o oxi t éx,
[2.6]

3T =

()

L L op u, Ou, Ouy
S 0, 42y
# ('6xf * éx3 * 6x§) y Ox, 0x, 0x;

If U and U’ are, respectively, the velocities of the walls W and W’ at O and O’ and if Q
and ' are respectively the angular velocities of W and W’ then the no slip boundary

3|

R J

Figure 1. The surfaces W and W".
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condition for u at the wall W is
u=U+Q AronW [2.

where r=[x,.x;. — (x2/2R,) — (x3/2R,) + O(r*)]. 2.
whilst the no slip boundary condition for u on the wall W' is

u=U +Q AronW [29]
where r'={x;, X5, X3), [2.10]

x5 being given by [2.5].

The velocity field (u, p) is expanded in terms of the gap separation a which is assumed
to be very small. Such an expansion is singular, and it becomes necessary to discuss two
regions of expansion. An outer region of expansion is defined using the coordinates
(xy, Xx,, x3) as independent variables and u and p as dependent variables. Thus in this
region [2.6] with boundary conditions [2.7] and [2.9] are valid. However in the limit of
a — 0, the two surfaces touch, the point of contact being a singular point for the flow.
Thus an inner region of expansion is defined using (X, X,., X,) as independent variables
and @ and p as dependent variables where

Xp=a "2x. % =a xy, %y = a x, (2.11]

(1;’2—k)u1

and i, =a vy = aM i My, dy = a*uy, p = a?hp, [2.12)

k being a constant as yet undefined.
By making use of [2.11] and [2.12], [2.6] may be converted to inner variables. It is then
seen that i and p must possess an expansion of the form

=10y +au + -
P=Ppo+ap, + [2.13
where the flow field (ii,, p,) satisfies
[2.14]
and the flow field (i1, , p,) satisfies
¢i@y), 0p, o? &\ o oXuy), 0p, ¢? aty o
o= ol o T - = e ) o
0 _ Ploky Ay @)y | 0@ _ 151

0%, | o2 0%, 0%, 0%,
Relative to the inner variables [2.11], [2.2a] for the wall W takes the form

%, = —(X}/2R,) — (X2/2R,) + O(a''?) [2.16]
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whilst [2.5] for the wall W’ takes the form

cos’¢ sin’¢ . ( 1 1\ . .2 (sin2 ¢ cos’ ¢)
—] + ——-— + B+
35, + 25, ) XX, 5, S, sin ¢ cos ¢ + X3 35, 25,
+ 0(a'’?). (2.17]

In order to solve [2.14] with boundary conditions on W and W, it is convenient to change
variables to (x,, X,, X;) where

X, =X, X, =X,, X3 =% + (¥2/2R,) + (X3/2R;) [2.18]
so that the wall W becomes
X3 = 0(a'’?) [2.19]
and the wall W' becomes
X3 = h(X,, X,) + O(a'’?) [2.20]

where the function h(X,, X,) is defined as

1 1\ .
:g—l-—gz— sin ¢ cos ¢

1 cos? in?
L ¢ + sin® ¢
2R, 28, 28,

h(X,, %) =1+ %2 + X,X%,

1 sinf¢ cos?¢
+ %= - 221
*\3r, T 25, T 1s, [2.21]
With the new variables (X,, X,, X;), [2.14] for (i, p,) take the form
Pl o %o _ Py S0 Bl _ B _g
ox3 0%, R,0%; = o0x3 0%, R,0%; 0%y
Og)y  0(lo)y  Olo)y Xy 0lHo)y | X, 0llo), _ 0. 222]

+
6%, = 0%, 0%, R, 0%; =R, 0%,

The boundary conditions [2.7] and [2.9] applicable on the walls Wand W’ may be expressed
in inner variables and so one may write the boundary conditions for ii, in he form

(o), = a-k{al/zul — aQd %, — 33/292[()7%/2R1) + (fg/ZRz)] + 0(02)}-
(@o), = a *{a'?U, + aQ,%, + a*?Q,[(x3/2R,) + (X3/2R,)] + O(az)}.

(o) = a MU; + aV¥(Q,%, — Q,%,)] on W [2.23)
and (@), = a Ma'?U}| — aQsx, + a®*Q,h(X,, %;) + O(a?)],
(o), = a~M[a'?U} + ay%, — &**Qh(X,, %,) + O(a?)],

(fHy); = a MUj + aV> (%, — Q,%,)] on W'. (2.24]

Since the creeping motion equations are linear, and since (u, p) and hence (i, , p,) depend
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linearly upon U, U’,  and €/, it follows that
iy =0, + @p + Uc. Po = Pa + Pp + Pc (2.25]

where the flow fields (i, 5 ). (5, pp) and (i, p) each individually satisfy [2.14] and where
{li, p,) is the flow resulting from U, and U}, (fig. pp) is the flow resulting from U,. U,.
Q,.Q,. Uy, U5, Q) and Q) and (i, p¢) is the flow resuiting from Q; and Q. Thus (i,. p,)
satisfies the boundary conditions

(G, = (@), = 0. (i), =a*U; onW 12.26]
(i), =y, =0 (i) = a U} on W’ (227
whilst (i, pp) satisfies (tig), = a *" VU, + O(a ** ¥

(lig), = a **V2U, + 0(a™ " %3, (igy = a *" " 3Q,x, — Q,%,) on W [228]
and (lig), = a " V2U + O(a %)

(g), = a **'2U, + Ol@a ™ ™). (dg); = a VIO X, — Qyxy) on W [2.29]
and (¢, pe) satisfies

(ic), = a ¥ (- Q,X%,), (tic), = a %" 1 Q%) (ic)y =0  onW [2.30]

and (lic), = a " (—Q4%,), (dg), = a "X, ey =0 on W [231]
The walls Wand W’ are taken to be
=0 [2.32]

=i

3
and Xy = h{x,, x,) [2.33]

with an error O(a* !"?) in these expressions (see [2.19] and [2.20)).

From the boundary conditions [2.26] and [2.31] it is seen that in order to calculate
(@i,, p4) one must take k = O, whilst for (lig, pg), kK = 1,2 and for (@, pc). k = 1.

It should be noted that the inner flow fields when expressed in terms of outer variables
by [2.11] and {2.12] must be matched onto the outer expansion. It will be shown later that
it is unnecessary to calculate in detail this outer expansion in order to find the force and
torque exerted on Wand W’ to the order in a with which we shall be concerned. However.
it should be noted that the outer expansion cannot contain any terms which tend to infinity
as a — 0 for a fixed value of r, although any term in this expression may tend to infinity
as r tends to the contact point.

3. DIRECT APPROACH OF SURFACES

From the boundary conditions [2.26] and [2.27] the flow field (i . p,) of the inner
expansion is that which results from the direct approach of the two surfaces (i.e. it results
from U, and Uj). Thus taking k = 0, the boundary conditions on @i, become

@), = (), =0, (@);=U, onx,=0, [3.1]
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(@), =Wa); =0, (@), =U; onX;=hx;,%) ~ ~ [32]

in the limit of a — 0.
Since (i1, j,) satisfies [2.22], it follows. that

i Pasgt 4 Az (aA)z—~(f4fs + B%; + D [33]

where A, B, C and D are constants obtained from the X, integration and are thus arbitrary
functions of X, and x,. These quantities A4, B, C and D may be determined from the boundary
conditions [3.1] and [3.2] as

1 (0Ba , | - . 1 61’4
= — |4 , = hix,, =D=0. 34
A= 2n (5)'(,) hx,, X;) 2/‘ 6 (%, X3) C=D (3.4]

Substituting the expressions for (ii,), and (i,), given by [3.3] into the last of [2.22] and
integrating with respect to X, one obtains

l(azﬁA azp'A) s 0A 68) ,

- o 1 1 N
(@a)s 6ul\ox?  ox? 3 6xl 0%, 3
1 [x, 517,4 xz aPA = A B
2# (Rl axl RzaXZ Rl xl +E_x2 x3+E [3.5]
where E is an arbitrary function of X, and %, .
Since (i ,); = U, on x5 = 0, it follows that
E =U,. [3.6]

AlSO Since (ﬁA)3 = Us on 23 = h(il N 22)’

1 (3%, 62p4) 34 0B
Uy — U= —— |24 L TPa)ys 2 il
(U3 =03 6p(af§ o%2 2(ax, T,
xl aPA X, aPA 2 _ A _ -
+
2# Roax TRt TR TR 3.7

Substitution of the values of 4 and B from [3.4] into [3.7] yields
1 =~ Lvi ’
Eh3§72 .+ ‘—‘;hZ(VpA -Vh) = (Uy — Uy) (3.8]

in which p, and h are functions of X, and X, and in which all derivatives are taken with
respect to the variables X, and X,. Equation [3.8] may be written as

V- (1Vp,) = 120Uy ~ Uy) (3.9
where h(x,, X,) is defined by [2.21]. One may write this expression for h in the form

h=1+%-K-x [3.10]
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!

and X7 is its transpose. Then K is the matrix

1 +cosZ¢>+sin2¢> sin¢cos¢(i_i)

where X is the column vector

1

[3.11]

= =)

2

2R, 28, 28, 2 S, S,
. - L [3.12]
smd)cosd)(L 1 1 +sm ¢+cos ¢

2 s, S, 2R, 25, 25, |

Define 4, and 4, as the eigenvalues and X* and x* as the corresponding normalized
1 2 g 1 2 P g
eigenfunctions of the matrix K. Thus /£, and 4, are the roots of

K — il =0 [3.13]

where 1 is the identity matrix and x¥ and X% satisfy

K- X* = X} K-x%=/,x% [3.141
and
T xr =x3T-x% = 1. [3.15]
If a matrix A is defined as
A = (X* X%), [3.16]
then the transformation
X =A%, 1317
where % = ’:‘) [3.18]
is orthogonal and transforms [3.10] for h(X,, X,) into the form
h= 1+ A Xt + 2,%2. [3.19]
Thus [3.9] for the pressure p, expressed in terms of the X, . X, variables becomes
ﬁ;‘ [(1 + A%+ ).zxz)g—’;’ﬂ + 622 [(1 + 4%+ Az)eg)g%’:—] = 2u(U, — Uy, [3.20]
In order to solve this equation, the substitution
X, = (1/4}*)F cos 0 X, = (1/A3/*)F sin 0 [3.21]

is made so that the equation takes the form
(4, cos? B + A, sin? 0)F2(8%p ,/0F%) + 2(A, — 4,)sin O cos OF(0%p ,/0F0O)
+ (4, sin? @ + 1, cos? 0)(8%p,/06%) + (4, sin® 0 + 1, cos? O)F (3P 4/OF)
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+ 2(A, — 4,)sin 6 cos B(3p ,,/06) + (673 /(1 + F2))(4, cos® O + 4, sin? 0)(0p ,/dF)

+ (672/(1 + FH)(A, — Ay)sin 0 cos 8(9p,/00) = [12u(Uy — U)F3 /(1 + £33, [3.22]
If it is assumed that j, is of order /™ as ¥ — oo, then By [3.3], [3.4] and [3.5] it is seen
that (ii,), and (@,), are O(F"~ ') as F — oo and (i), is of the form U, + O(F") as 7 — oc.
By expressing these quantities in outer variables and noting that the pressure and velocity

in the outer region of expansion cannot contain any terms which tend to infinity as a - 0,
it may readily be shown that n < —4. Hence

Pa=0@F% as f — oo, [3.23]
Now the solution of [3.22] which satisfies [3.23] and possesses no singularity at 7 = 0 may
be shown to be

Pa = —[Bu(Us — Us)/(d; + L[/ + 72] + 0@'?). (3.24]

The error term of order a'/? in the expression for p, arises from the fact that the expressions
for the walls given in the boundary conditions [3.1] and [3.2] have an error of order a'*.
If n is defined as the unit normal to the surfaces W from solid to fluid, then the force F and
torque G about O exerted by the fluid on W are given by

Fi= f pijn; dS [3.25)
w

and Gl' = J‘ 8ijkrjpk,n, dS [3.26]
’ w
where p;; is the stress tensor corresponding to (u, p) and dS is an element of area of the
surface. It may readily be shown that for small values of r = (x? + x2)"2, n, dS and r are
n = (x;/R, + O(r?), x,/R, + 0(r?), 1 + O(r?)), dS = dx, dx,(1 + O(r?)
r = (xy,x;, —x3/2R, — x3/2R, + O(r®). [3.27]

For the evaluat_ion of the integrals [3.25] and [3.26] the surface of W is divided into two
ares §, and Z,, the area S, being defined by that part of W for which the vector

x = ("1
=[] [3.28]
satisfies the relation xT-K x < ¢, [3.29]

where K is the matrix given by [3.12] and ¢ is a small positive arbitrary parameter inde-
pendent of a. The area Z, is that part of the surface of W for which [3.29] is not satisfied
(see figure 2).

The condition [3.29] may by [2.11] and [2.18] be written in terms of inner variables as

X7 K X <a ¢ : (3.30]
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Figure 2. The division of W into areas S, and Z,.

and by the comparison of [3.10] and [3.19] be further reduced to
AXT 4 ApX3 < a et [3.31]
Writing this condition in terms of 7 by [3.21], one obtains
F<a Vi 332

Thus the force F and torque G given by [3.25] and [3.26] may be written as

F, = f pin;dS + f pin; dS [3.33]
S, I,

G, = J &t Py AS + j it Pty AS. [3.34]
s b

e

Since ¢ is independent of a, the integrals over X, in [3.33] and [3.34] tend to finite limits as
a — 0, although each is a function of ¢ and may be singular as ¢ — 0.

The integrals over S, are evaluated by expressing all quantities in inner variables, the
region of integration then being defined by [3.32]. The values of n, dS and r given by [3.27],
when expressed in inner variables become

n = {a"%%,/R)) + Oa), a"*(%,/R,) + Ofa), 1 + O(a)}.  dS = adx, dx,{1 + O(a))
r=1{a"2%,.a"2%,. —alX}2R)) + (¥}/2R,)) + O(a>?)}. [3.35]
The stress tensor p,; is written in terms of inner variables by [2.11] and [2.12] as
pyy = d{—a *p + 2a 'p(éi, /%)) P2y = a[—a ?p + 2a” ' uléi,/X,)]
Py = a[—a *p + 2a ' p(0i,/0X5))
P2 = P2y = aa” (0, /0%,) + a  u(di,/0% )]
P23 = P32 = ala™??p(0i1,/0%5) + a” V2 p(8il5/0%,)]
Pyy = py3 = ala” ¥2u(0d,/0%,) + a” V2 u(di;/0% )] [3.36)

Substituting the values of n, dS, r and p;; given by [3.35] and [3.36] into the integrals over
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S, in {3.33] and [3.34], one obtains

Jm%u=¢*{fpuwmnwwwwmaﬁg+mm
Se Se )

fmmﬂ=¢”ﬂ[hwm&wwwwﬁmﬁﬂn+mm
Se

S.

f pan;dS = a""f (—p)dx, dz, + O(a) [3.37]
Se Se

J- &y il Prat S = ak_mf (—%,p)dx, dX, + O(@**1'?)

S s,

J‘ E2 T Pt S = a"_”J- (+%,p)d%, d%, + O(a**'/?)
s, s,

[ eowrpamas = [ (R - /R% %20
S S,

&

and

+ u[X,(0,/0% ) — X,(01,/0%,)]} d%, d%, + O(a**V?). [3.38]

Evaluate now the force F, and torque G, resulting from the flow field (ii,, j,) produced
by the direct approach of the two surfaces W and W'. From [3.3] and [3.4] it is seen that the
values of (ii,), and (i), are given by

0P 4 1

1 . o o
(), = 27(2% — X3h) (‘T)~ (g, = 5 x§ - xah)(

3.39
0%, [3.39]

613A) ,
0%,

From the value of j, given by [3.24] it is seen that if X, and X, are replaced by — X, and
—X, respectively, the value of p, is unchanged whereas (6i,), and (i,), become —(ii,),

and —(i,), respectively. Hence it is seen that the values of F, and G, determined from
(3.33],[3.34], [3.37] and [3.38] with k = 0 are

(F4); = O(lna), (F4); = O(lna), (Fgs = avlf (—Pa)dx, dx, + O(a-l/z) (3.40]
Se

and

(G4); = O(lna), (G4); = O(ln a),
(G4)s =f {I1/R, — V/R,IX X,p 4 + ul%,(8(f,),/8% ;) — %,(0(i,),/0%3)]} dX, dX,
S: .

+ f(e) + O(a'’?) [3.41]

where it has been noted that the integrals in [3.33] and [3.34] over the area I, are of order
a® and may be functions of ¢ which tend to infinity as & — 0. Actually it would appear from
(3.37] and [3.38] that (F ,),, (F,),, (G,), and (G ,), are of order a°, but a closer examination
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1:2 3

of the error term of order a'’* in p, shows that it is of order #™* as / — x, so that the
integrals in the expressions for (F ,),. (F 4);. (G 4), and (G ,), possess logarithmic singularities
and so give rise to terms of order Ina (in much the same manner as the expression for
{G,); yields a term of order In ¢ as shown below).

By making use of [3.39] for (4,), and (7 ,),, the above equation for (G ,); reduces to

(Gu)y = f {(I/Ry — R)X X5p 4 + $h[Xo0P4 X)) — ¥,(CP/0%,)]) X, dX,
S

+ f(&) + Oa'"?). [3.42]
From [2.18] and [3.17], the relation between the %,, X, variables and the x,. X, variables is
T=A% (343
where A is the orthogonal matrix
A = (X1, x3),

x% and X¥ being the normalized eigenvectors of the matrix K. Since A is orthogonal

cos sin ;
A= ( o ") 13.44)
—siny cosy

so that the eigenvectors X* and X% are

cos sin .
gt=| © X) %t = X)- 13.45]
—sin y cos ¥
Hence the transformation [3.43] is
X, = X, cosy + X,siny, X, = —X,siny + X, cos . [3.46]

Substituting these values into [3.40] and {3.42] for (F ), and (G,);, one obtains

(F ), = —a*f padi, di, + O(a™"?)
S.

(G = f {(—sin y cos y)X7 + (cos? ¥ — sin® y)X X,
Se
+ (sin y cos ¥)X3}(1/R, — 1/R,)p, dx, dx,
+ f Yh[%,(8p /0% ) — % (0P o/0%,)] dX, d¥, + f(e) + Ola' ). [347)
N

&

A further substitution using {3.21] yields

a~ Yl pa2m
(Fo; = -—a"(;tl}.z)"’zj‘ j pafdf do + Ota™"?)
F=0 #=0



THE MOTION OF SUSPENDED PARTICLES ALMOST IN CONTACT 355

a-1/2g
—sin y cos .
(Gu)s = f f [ X 4 cos? 0 + (cos® y — sin? y)(4,4;) "2 sin B cos O
F=

(sin x cos x)

- 20](1/R, ~ 1/R,)B (7> dF dB)(4,4;)~ 11 dF d
2

a1/ p2n
+ f (A, /4,)V/2[F sin 8 cos B(8p ,/0F) — sin® 8(dp,,/30)]

F=0 =0
— (A5/A)V¥[F sin O cos (0 ,/OF) + cos? 0(0p,/00))(1 + F?)F(A,4;)~ V) dF dO
+ f(e) + 0(a'?). [3.48]
If the value of j, from [3.24] is substituted into the above equations and the integration

with respect to 6 performed, the values of (F,); and (G,); are obtained as

a2

(F4)3 = 6n(u/a)(Us — Uj)(4, + lz)"(fllz)"”f F(1 + F)72dF + O(@™"?) [3.49]

[

and

(Gas = 130(Us = Us)(hy + A2)(Aeds) ™ V2(1/Ry — 1/R;)(1/A, — 1/,)sin x cos x

f o (1 +Hr‘2)‘2 df + f(e) + O(a"?). [3.50]

o]

As a — 0, the integral in [3.49] tends to

f (L + 732 dF = 4. [3.51]
0]

However, one cannot replace the upper limit in the integral in [3.50] by infinity since it
then becomes divergent. Straightforward integration yields the asymptotic form of this
integral for a — 0 as

a—1/2¢
f (1 + F)2df = —4Ina + (Ine - 1) + O(a). [3.52]
0

The substitution of this integral into [3.50] shows that (G,); contains a term in (In q)
and a term in (a®). This term in g° has a contribution from the inner area S, proportional
to (In e). However since the value of (G,); as calculated must be independent of ¢ in the
limit of ¢ — 0, it follows that the contribution proportional to (In ¢) in the term of order
(a°) must be exactly cancelled by the contribution f(¢) from the outer region X,. Therefore
one has F, and G, given by

(Fo1=0(na), (F,), =0(na),
(Fa)s = 3m(p/a) (U — Us)(d; + 4;)71(4,4,)" Y% + O(a™ 17} [3.53a]

and
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356 R. G. COX

(G,), = O(ln a), (G4);, = Ollna).

(G )y = —pIna)3a/ 20U — UMa, + 23 222} P HIR, — RSN, — 1 25)sinycos s
+ 0(a%). £3.54)
If the surfaces W and W' are each locally symmetric so that replacement of x, and v,
by —x, and —Xx, leaves x; and x% unchanged, the form of the surfaces are then given by
[2.2b] and [2.3b]. The theory is then altered only with respect to the order of magnitude
of the error terms involved (e.g. p, given by [3.24] would now possess an error of order '
instead of order a'/?) and one would obtain that (F ;),.(F,),.(G,), and (G ,), are no longer
singular being of order a°. Also (F ,); and (G ,), would still be given by [3.53a] and [3.54
except that (F,); now has an error term of order (In a) instead of a~ ' 2 as was shown by
Cox & Brenner (1967) and by Cooley & O'Neill (1969) Thus, for this case,

(F 5 = 3n(walUy — Uiy + 23) " '(4425) 12+ Otlna. [3.33b]

4 TANGENTIAL AND ROLLING MOTION OF SURFACES
In this section we consider the effect of the flow field (iig. pp) resulting from the tangential
and rolling motion of the surfaces W and W'. Such a flow is that due to the components
U,, U,., U, and U} of the velocities U and U’ and that due to the components Q,. Q,.
Q) and Q) of the angular velocities £ and Q'. Taking k = . the boundary conditions
[2.28] and [2.29] for (iig, jig) become for small values of a,

(aB)l = L‘Y] + O(a’. (as)z = UZ + O(a). (ﬁﬂ)3 = Ql,’_(z - QZXI on .\:3 = 0 [4"i
(g, = U\ + O (iig)y = Us + Ofa), (g = %, — O5%, on T, =h [42]

where ¥, = 0. X, = h for the walls are correct to order «' *
Since (iig, pp) satisfies [2.21] it may readily be shown in a manner similar to that used for
(liy. Py [see§ 3]. the value of the flow-field (g, pg) is to order {a ') given by

Pp = PplXy. Xy)
) I . _
{ig); = — (Pp/CX )Xy + A%, + U,y (), = 5 (CPg/CX,)X% + Bx, + U,
2u 2
1 )
(lig)y = — “ [(F2Pa/0X3) + (A2Pg/exd)]xd — L(EA//R, + (CBIfRXS
U
1 - >
- »2;1[?\11;’R1(("fﬁ8/’8f1) + X3/Ro(Cpg/CR5)]N5 — ((A/R)N, + (B/R,)N)X,
+ (Q,%; — QX)) 4.3
where the quantities A and B are functions of X; and X, only and are given by
1
A =[(U; - U,)h] —-(ﬂ /OX ). B = [(Uy — U,)/h] — 571(“,38/(“?,)11 [4.4]
2p =t

By substituting the value of (iig); given by [4.3] into the last boundary condition of [4.2]
one obtains an equation for g which may be reduced to

1 = - , , -
—(1/12wh*V2pg + i hA(Vpg-Vh = {[(U, — U)/R,] — (©Q, — Q,)} X,
m

(U, — Uy)/R,1 +(Q, —QDIX, — 3(Uy — Upeh/dx, — $(Uy — Uy)chicx, [4.5]
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where differentiation is with respect to the variables 5‘:, and X,.
Substituting into the above expression the value of h(%,, X,) given by [2.2], one obtains

(1/w)V - (*Vpy) = q" - X [4.6]

where X = (%,, X,)” and q is a vector defined by
cos’¢ sin¢ singpcose [ 1 1)
—(Q,-0 Bt AP ialih. 4 I U) 229 -
(2 =)+ (U = l)(211, TR TN AN A T [

q=12

sin?¢ cos’¢ sm¢cos¢ 1)
U;— AU -U) ——— | ———
O Q)+ 2)(2R2 s, 25, ) GimW sl s

Changing to %, and X, variables by means of the transformation [3.17], [4.6] becomes
l{ai, [(1 + A%+ %3 a””] + 52-2[(1 + A%+ A%3)° ”‘2’]} = (Q1%; + Q%))
, [4.8]
where Q = (Q,, Q,) is a vector defined by
Q"=q"'A or Q=ATq [4.9]
and so by [3.44] for the matrix A,
Q,=¢q.cosx —qysiny, Q,=gq,siny+ g,cosy. [4.10]

By making the further substitution [3.21], [4.8] may be written in terms of the 7 and 0
variables as

2~ 1...

8 o*p
(A, cos? 8 + A, sin? O)F* —- . 2(A, — A,)sin 8 cos OF 7 60

2~ a..
+ (4, sin? @ + A, cos? 9)——— + (A, sin? @ + 4, cos? B)r——
oF

op, 673
+ 2(4, — 4,)sin 0 cos 0% + ( ) (A4 cos? @ + 1, sin’ (9)6a

( ‘2)(12 A1) schosG—— ((,1 )1/z°059+ 2, sinf uf’ [4.11]
1

TR TR
It will be seen later that one only requires the form of j, for large values of 7 so the limiting
form of [4.11] for / —» oo may be taken, i.e.

2 = 2~

FFs — 4,)sin @ cos 0F —— o0p

(A, cos? 0 + A, sin? )72
1 2 ) a ao

+ (A, sin? @ + A, cos? 0) 2+ {(64, + A,)cos? 0 + (1, + 64,)sin

692

‘l
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. (Pg 3| O Q "
+ 4(4y ~ A4 )sm0005()—a§ =pur 3 U»,)” cos + ——— e ssin 0] [4.12)

In a manner similar to that for p, (see §3), it may be shown that for satisfactory matching
onto the outer expansion one requires p, to satisfy

Pp=0(r"% as r— x. [4.13]
It may readily be shown that the solution of [4.12] satisfying [4.13] is

1 0, Qz : } .
pp = — — i ? cos 0 + sin (- 4.14a
pB 7l { H Z(%/] + 7/7) (‘)/1 + }/7) [ !

Due to the approximation made in [4.12] that 7 was very large, [4.14a] for pg gives really
the first term in the asymptotic expansion of pg for large 7. Also since the walls given in
[4.1] and [4.2] possess errors of order a'/?, so does fgz. Thus

1 0 0, . } . .
~ A3 1 2 a2 12
= — —ur ———m 05 ) + 5 ————sin0, + O(F ") + Ola" 7).
Pe 2“ {/1}’2(3/., + 27,) /5 (7/1 + 37, )

[4.14b]
By replacing x, and X, by —x, and — X, respectively or equivalently 0/ by (n + ). the
value of pgy becomes —py. Also such a substitution into [4.3] shows that (iig), and (i),
remain unchanged. By making use of these symmetry properties of the flow, the force

Fj; and torque Gz on W resulting from the flow (5, pg) may be calculated from [3.33],
[3.34],[3.37] and [3.38] as

B o]
(FB)1=J (—x‘p”+u((u”)‘)d dx, + file) + O(a''?).

R, x5
(Fg), = f
s

e

(Fg)s = O(ln a) [4.15)]

I3

X,Pg C(dg)z
+
R, o X4

) dx, d%, + f5(e) + Ola'?).

and (G = J‘ (—X,pg)d%, dX, + g,(e) + O(a'?).
S

(Gy)o = f (+3,pg) dX, X, + g5(8) + Ola™?).
S

(Gg)y = 0(a). [4.16]

That (Fp); is of order In a rather than a° follows from the fact that the error term of order
a'? in py behaves like 7% as 7 — o giving a logarithmic singularity for the integral for
(Fpg);. Substituting the values of (i), and (iy), into these expressions from [4.3] and
changing to the X, and X, variables, one obtains
p . Uy, -~ U))
(Fg), = J [— ERIE()E1 cosy + X,siny) + ﬁ——l—h——l—
1

&
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1 Opp 0pg
- Eh (cos xa—p— + smxa—— :ld)cl dx, + f,(e) + O(a''y),
l

p : U, -U
(Fg)2 =f [-—ﬁ(—fl siny + X, cosy) + H(__z___z)
S. R, : . h

1 pg g
- -h(—-smx—g— + cosx— ]dx1 dx, +f2(s) + O(a'’?),

2 ox 0%,
(Fg)s = O(In a). [4.17]
and (Gp); = f —pg(—X, sin y + X, cos y) dxX, d%, + g,(e) + O(a'’?),
SC

(Gp), = J + pgl%, cos x + %, siny)dxX, d%, + g,(e) + O(a'’?),
Se

(Gg)s = 0(a®). , [4.18]

These integrals may be evaluated by changing from X, and %, to 7 and 0 variables and
by substituting the value of py from [4.14b]. The region of integration S, in terms of the
F and 6 variables is

0<Ff<alV% 0<0<2n [4.19]
so that upon performing the 0 integration the above expressions for F and G, become

1 a % pm( 0, cosy Q, sin y 4U, — U,F
F.). = - r -
(Fa) = 5mu fo [Rl {11(3/1, T2h) Lo A3t T A

F 3(1 + ’12){ Ql COS ¥ + Q_Z sim x

-1/2 :
(34, + 24,) (211 + 312)}](/11;»2) dr + fi(e) + O(aI/Z)’

J,a_melif-l{ Q, siny Q,cosy }+ 4(U; — Uy¥#

1
Fg), == —
(Fa)y =5 0 MG +24,) 0 A,024, + 34y (1 + 7%

e . Q;siny Q,cosy _
31 2y _ . 1/2 4z 1/2
F=°(1 + 7 ){ G, T 20y) + o+ 312)}](/»112) df + fi(e) + O(a'’?),

(Fg) = O(lna), [4.20]

1 Ql Sin X Q2 COSX } a-1/2g
and (G = -7 {— + A —I/ZJ A-1 4
sh =5 7064, + 23y T aen 1yl M) L, T

+ 8i(e) + O(a'’?),

1 Q, cos Q, siny - J“"m‘ 1 4z
Go)y = —— 1/2 1
(Ga) 2"“{11(3,{, T2y T ok s T
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+ g,(¢) + O(a'’?),

(GB)S = O(GO). [4.)1}

Actually, the term 7~ ! in the integrands in the above equations are correct only in the
limit 7 — 20 (since pp was obtained from [4.12] rather than the complete {4.11]) and they
really have no singularity at 7/ = 0. However the logarithmic singularity at 7 — .
allows one to proceed as for the calculation of (G ,); given in §3, to obtain the asymptotic
forms of Fy and Gg as

n Q,cosy 1 Q,siny 1
Fg) = —ull - h
{ B)l na) ( )1/2 |:( + 2 )( ,{1 1) + (2}»1 + 3A2) (R1)~2 1)

+ 44U, - Uy) ]

n Q,siny 1 Q,cos y ( ! )
Fp), = —u(ln 5| - i -1
(Fgla = —ul 0)4(/-_1/12)1,2[ (34, + 2/12)(R211 ) (22, + 342) \Ry/,

+ 4U, — Uz)] + 0(a%, [4.22]

(FB)3 = 0(1]‘1 a).

n Q,siny g, cos
d Gg)y, = —u(ln - + + O(d°),
and  (Gp)y = —ullna) 4(,1112)“2{ IGh + 24, T A,24, + 312)} (@)

- Q, cos Qg sin y
Gy); = +p(lna)————{ + + + 0,
( B)Z #( o 4(4)/12)112{ /11(3111 + 2/12) '12(2}*1 + 3}'2)} @

(Gg)y = 0(a°). [4.23)

If the surfaces W and W' are locally symmetric so that they are given by [2.2b] and [2.3b]
then Fy and G, are as given above except that (Fp), is no longer singular, being of order
a® The quantities Q, and Q, in [4.22]) and [4.23} are functions of U,, U,, U}, U;, Q,.
Q,. Q) and Q; and are given by [4.10] and [4.7], i.e.

Q, =4q,cosy — g,siny, Q, =gq,siny + g,cos g [4.24]

]

—(Q, - Q U, — e e —
where g1 12{ (€3 2) + (U 1)(2R1 28, 25,

sin ¢ cos ¢
2

- (U = Uy)

q; = 12{4—(0’1 - Ql) + (U'Z
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singcosg | | 1
- (U, - Ul)——-u — - —)} [4.25)
2 S, S,
5. ROTATIONAL MOTION OF SURFACES ABOUT NORMAL
The flow field (&c. jic) resulting from the rotational motion of the surfaces about their
mutual normal is now considered. Such a flow field is that produced by the components
Q, and Q; of © and ', there being no translational motion of the surfaces. Taking k = 1,
the boundary conditions [2.30] and [2.31] for (ii;, pc) become
(ac)l = _03i2. (IZC)Z = +Q3i], (ﬁc)3 = 0. on f3 = O. [5]]
and (ac)l = _stz, (ﬁc)z = +Q’321, (ac)3 = 0, on .?3 = h(fl N ?2) [52)
Since (. pc) satisfies also [2.22]. one may proceed as in §3 for (ii,. p,) and in §4 for (ug. pg).
Therefore one may obtain
Pc = Pcl%y. X3)

(iic); = (2u)™ M(0Pc/0X)x5 + AX3 — Q3%,

(c); = QU™ H(0Pc/0X,)X5 + BX; + X, 4
(c)y = —(6p)” (D*Pc/Ox} + O*Pc/0x3)X3 — $(0A/O%, + 0BJO%,)N3
—(2W) 7~ 1(%,/R,)OPc/0%, + (%2/R,)0Pc/0%,)%% — (A/R})X, + (B/Ry)X)X;, [5.3]
where 4 and B are functions of X, and %, and are given by
= —(2u)" OPc/0X )h + (Q3 — Q5)X,/h, B = —(2u)~ Y(0pc/0x)h — (Q3 — Q3)%,/h.
| | [5.4]

By making use of the boundary condition [5.2] for (ii.); on X3 = h, one obtains an equation
for p. which may be written as

(/1Y - (BVpc) = Q3 — Q) {6(X(8h/0%,) — x2(0h/0%,) + 12(1/R, — 1/R,)%, %, ). (5.5]
With respect to the X, and X, variables, this equation may be written as
Vu{0/0%,[(1 + A, X} + £,%2)(0pc/0%,)] + 0/0%,[(1 + 24, %% + 4,%3)30pc/0%,]}
= 12(Q; — )[4, — 4)%,X; + (1/R; — 1/R,){—X}sin ycos x
+ X,X,(cos? y — sin? y) + %3 sin y cos y}]. (5.6]
By means of [3.21], this equation may be written in terms of 7 and 6 as
(4, cO8? 0 + 4, sin? O)F(0%pc/0F*) + 2(4, ~ A,)sin @ cos OF(62p/0F 66)
+ (4, sin? 8 + 4, cos? 0)(0*pc/00%) + (4, sin? @ + 4, cos? O)F(8p./dF)
+ 2(A; — Ay)sin 0 cos HEPc/00) + (6F3/1 + F?)(4, cos® O + A, sin? 0)0p./0F
+ (6F%/1 + F*)(1, — A,)sin 0 cos B(0p/06) = [12uf*/(1 + 7F3)*1(Q, — Q})
[(Ay — }x,)siﬁ 6 cos 0/(4,4;)'* + (1/R, — 1/R,){~(sin y cos y cos? 8)/4,
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+ [(cos? y — sin? y)sin 0 cos 01/(4,4,)" % + (sin y cos y sin® 0)iZ,}]. 5.7
It may be shown that j, for satisfactory matching onto the outer expansion must satisfy

the condition
Ppe=0(F"%  asi— 7. [5.8]

By letting # — oc in [5.7]. it may be shown that the first term in the asymptotic expansion
of p. for large 7 is of the form

e = uf~*(A'sin 20 + B cos 20 + C). [5.9]

where A’ B’ and C’ are given by

s (Q, — Q’s)[().2 f,)‘l) ( 1 1 ) (cos? y — sin? 1)}
Gy 4 75) L4202 AR, Ry (4200 )
(Q; — Q’,)( 1 | ) (i — 23)°
B, et + A; - —— m— St g 1 i : y -
in R, TR0, 4y T ey
3(QB~Q’3)(] 1)(1 Iy
C= - — 2 — — | |— — —|sinycos 7. [s.10
2. 1) \R, TR, T TN e

From [3.33], [3.34]. [3.37] and [3.38] with k = [, the value of the force F and torque G,
on W resulting from the flow (.. pc) 1s

(Fo), = 0@, (F¢)y = 0(a°)., (F¢)y = — f Ped®, d%, + () + O™ ) [5.11]

5.
and G = 0(a® asa— 0. [5.12]

where f(¢) may be singular as ¢ — 0. Changing to 7. 0 variables. the above expression for
(F); becomes
(F(‘)3 = _(21/12)41 lf [ ﬁ(vf dido + fle) + 0(a+1). {51”{]
F=0 Y8=0
Substituting the asymptotic value [5.9] of j¢ into this equation and performing the inte-
gration, one obtains

(Fe)y = muC'i4y75) " na + O(a) asa — o [5.14]

Hence, upon the substitution of the value of C' given by [5.10], the value of (F( ), may be
written as

3n L1\ (b =4y o
Fo)y = pllna)———==(Q5 — Q)| — — —| ————"=sinycosy + Ola"). [5.15
(Fo)y = pllna)y o e 3)(Rl Rz) Ty 4 i) HEOE :

6. RESISTANCE MATRICES FOR SURFACES

The results for the force and torque on the surface Was calculated in Sections 2- 5 will now
be combined into a single relation. Since the forces and torques were calculated on the basis
of the creeping motion equations, the relation between these forces and torques and the
velocities and angular velocities of W and W’ must be linear. Hence if we define a six
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dimensional force vector # acting on W as
F =(F,.F,,F,,G,.G,.Gy) [6.1]
and six-dimensional velocity vectors v and v' for the surfaces W and W’ as
v=(U, Uy Uy @, Q,, Q). ¥ = (U}, Uy, Us. Q). Q. Q) [6.2]
then there exists (6 x 6) matrices X~ and X"’ such that # is given by
F = —uX v+ A V). (6.3]

This type of six dimensional representation was used by Brenner (1964, 1966).

An examination of the results [3.53], [3.54], [4.22], [4.23] and [5.14] shows that the
velocities U and U’ and angular velocities  and £ of the surfaces W and W’ occur only
as the quantities (U’ — U) and (' — ). Hence to the order considered

N = -N [6.4]
so that F = —puX -(v—v'). [6.5a]

However it must be noted that [6.4] applies only to the order considered and does not
apply. for example, to terms of order (a®) in the asymptotic expansion for small a. Thus
fora—0

F = —uX (v—v) + 0(d) [6.5b]

where X~ tends to infinity as a — 0.

If v = 0, then X is the singular part of the (6 x 6) resistance matrix for the surface W
in the presence of W’. It was shown by Brenner (1964) that the resistance matrix for a body
is symmetric, therefore

H =T (6.6]

where X7 is the transpose of X"
The 21 independent components of X may be found from [3.53], [3.54), [4.22], [4.23],
[5.11],[5.12] and [5.15). These results may be simplified considerably by using the relations

_]_+ cos’ ¢ + M) cos y — Sln—?—cﬂ(l— - —l—) siny = /,cosy
2R, AN 28, 2 S, S ;
- 5;—2 + Si;;(p + C(;S;Z(b siny + ﬁnq&zcosd) :S‘l_, - g;) cosSy = —/,siny
+ (2%1— + c;§i¢+ Si;;é siny + s_ind>2c05¢ (S‘I_, - Sl_z) oSy = /s,8inYy
(s s+ S cosn + T (L ) iny =y cosy

[6.7]

and 2y + A, =1/2R, + 1/2R, + 1728, + 1/28,, [6.8]
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which have been derived from [3.12].[3.13]. [3.14] and [3.45].

Thus the components of A" are given by

_ T 3cos? y(1 — Ry2)? 3sin? y(1 — R,/,)°
Ay = —(na , + _ ——— + R}
v ’u.xz)“R%[ (35, + 2454, (27, + 37202 }
n 3sin? (1 — Ry2,)*  3cos? z(1 — Ry/,)°
Z/ = — ln a)—————75-5 . - ~ - 4+  —— 4 R
22 ( )(/.,Az)'zRgli (32, + 245)7, (22, + 375)7,
A yy = (a” o + 0 1)
B = |a e a =
3 (’11/~2) (/»1 + /7)
) 3nsinycosy [ (1 — R AN — A 1 — Rz — Ryz,y
Ay =4, = +(n G)T—T’Té_'ili( Rl = Ram) gl &
{(A{4:)'*R R, (3/l + 24504, (2/1 + ?/z}h ]
'%/.13= ,%/.31 = 0(1“ a) K 23 & »”“32 = O“n (l)
3 in?
Foae = —(na) T [ sinty o eostz o
(/1/2) (3/ + 2/‘))/1 (2/1 + 3/ 7)/7
3r ?
K= —(na [ oA s L
(A AL BA, + 22004, (24, 4+ 34304,
A o = 0(a°)
. , 3n sinxcosx[ 1 1 ]
H s = Koy =+(na) ————"| — —— - S
43 >4 (Ina) (A A2 (34, + 2404, (24, + 3i)is
'/"/‘46 = 'W“()‘t = O(ao)» ‘1‘56 = K g5 = O(GO) '
_ . 37 sin ¥ COS ; 1-R 1 — R,/
A 14:,%/ 41 = +(lna) P /(1’7 /[ ( /l) ( """" : ./ - }
(Ay22) 2R, 1 (34, + 2A7]/ (2)., + 345045
‘ , 3msin y cos g (1 — R, (1 — R,45)
H s =X s = +(n - —
23 =M 2= Hlina) oo, [ Gis + 2007, (24, + 3ig)hs
. ) 3nsin ycosy /l-/,
H 3o = H ey = +(na)————5— ( — y
36 03 2(4,45)3 i+ Ay 2
. , 3n cos? 1l = Ry2y) sin® y(1 — R4, )}
A=A g = +(na)—— e | A T B
ts si= +linayr le[ (3iy + 2597, (25, + 30204y
3n sin? 7(1 — R,4,)  cos? x(1 — Ru/lz)]
H sy = K4y = —(In : - = - e
4 a2 = =l a)(/,m Rz[ (i, + 2727, (24, + 34504y
H g = A ¢y = 0(a®), H ye = H oy = 0(a°).
.1/.34 = .%/.43 = O(ln a), -1/.35 - »I’53 = O(ln a) [69]

Thus of the 21

independent components of .#";;, 16 are singular as a — 0 and of these 12

i
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have been explicitly calculated while the other 4 (namely X" ;, ¥ 53, ¥ 43 and f's;)
would require the knowledge of the terms of order r* in the forms of the two surfaces given
by [2.2a] and [2.3a). The remaining 5 components (namely J¥ 4, X 36, X 4. A 56 and
A ¢) are never singular as a — 0 and their calculation even to the lowest order in a would
require the complete outer expansion and would thus require knowledge of the entire
particle shapes. However for locally symmetric surfaces W and W' of the forms [2.2b]
and [2.3b] the values of " are as shown above except that:

(i) ¢ 55 as shown has an error of order (In a) instead of order (a~''?); and
(]]) -[13 = f3l’ f23 = f32, 1‘43 = f34 and f‘53 = f35 ar¢ no longer Singular,
being of order a°.

_In order to find the force and torque about 0/ acting on the surface W’ one merely has to
interchange the roles of W and W’ in the preceding theory.

7. TWO SPHERES ALMOST IN CONTACT

As an example of the use of the results given in the previous section, we consider the sur-
faces Wand W’ being respectively that of spheres of radii R and S (see figure 3). It is assumed
that the sphere W' is at rest and that W is undergoing a given motion. Hence

R,=R,=R, S§,=5,=85 [7.1]
and v =0. [7.2]
The six dimensional force vector & is then given by [6.3] as
F = —uX v + 0. [7.3]
The angle ¢ may be taken to be zero, the matrix K given by [3.12], then being
1/2R + 1/28 0
K= ( / / ) [74]
0 1/2R + 1/28
3

Figure 3. Two spheres almost in contact.
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The eigenvalues of K are then
Ay = 4, = 1/2R + 1/28, [7.5]

the corresponding eigenvectors being indeterminate. Thus y is also indeterminate and may
be taken to be zero. The components of %" given by [6.9] may then be written as

Koy = Ky = —(na) 2o [3(5 R 1] #i= +a@ ) TS ina
. = = —(Ina Ll . = naj,
i 22 (R+S)[5S+R? 3 ¢ T R+s? ’
24nR3S3 122R*S8*(S — R)
Hga=H s = —(Ina)—— . A e=He = +(lng) ——— 7
4a 55 (na)S(R+S)3 15 51 = +(lna) SR+ S
12nR*SYS — R)
Ay = A4y = —(Inag) ————’ [7.6]

S(R + §)3

all other components being non-singular.

"For the special case of § = o, the wall W’ becomes a plane surface and the problem
reduces to that of the motion of a sphere almost in contact with a plane wall. The above
values of the components of " then become

9{11=9{22

i

—(na)16nR/5, A3, = +a~'6aR? + O(n a),

]

Has=Hgs= —(INa)24nR3/5., A s = H s, = —H s = — A 4, = +(In a)127R?/5.

[7.7)
Thus by [7.3], it is seen that the force F and torque G exerted on the sphere is given by
Fy = u(ln ag)R(4n/5)(4U, — 3RQ,), F, = p(In a)R(4n/5)(4U, + 3RQ,),
Fy = —pa 'R*nU; + O(Ina),
G, = u(ln a)R*(12n/5)(U, + 2RQ,). G, = p(ln a)R*(127/5)(—~ U + 2RQ,),
G, = 0(a°). [7.8]

If these equations are expressed relative to the sphere centre rather than the contact point,
they become identical with the results for this particular case as calculated by Goldman,
Cox & Brenner (1967).

Considering the special case for which the radii of the spheres W and W’ are equal so
that R = §, the components of " given by [7.6] become

Ay =N, = —(Ina)nR, H 33 = +a Y(3nR*/2) + O(lna),
.%/44=f55 —-(1na)31tR3/5, 1152;%51 =%24=I‘42=0, [79}

i
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so that the force F and torque G exerted on W are given by
F, = u(lna)nRU,, ' F, = u(ln a)nRU,,
Fy = —ua~'(3n/2)R*U;5 + O(Ina)
G, = u(ln a)(3n/5)R3*Q,, G, = u(ln a)(3n/S)R3Q,, G; = 0(@®. [7.10]

i

i

These results, when expressed relative to the centre of sphere W as origin, become identical
with those given by Zia, Cox & Mason (1967) in their discussion &f the behaviour of a chain
of spheres in shear flow. Furthermore if one considers the tangential motions of one sphere
near a second sphere at rest, the spheres having unequal radii, then the forces and torques
on the spheres derived from [7.6] may be shown to be in agreement with those obtained
by O'Neill & Majumdar (1970).

As another illustration of the use of the above theory, the force and torque on a sphere of
radius R (with surface W) moving close to a fixed circular cylinder of radius S (with surface
W) may be calculated. Taking axes such that the 1-axis is parallel to the cylinder axis with
the 3-axis normal to the surfaces at O (so that the situation is the same as shown in figure 3
except the sphere of radius S is replaced by cylinder with axis parallel to 1-axis), the radii
of curvature are R, = R, =R, §; = o0, §, = § with ¢ = 0. Thus matrix K given by

[3.12] is
K_(I/ZR 0 )
1o 1/2R + 1/28

whose eigenvalues are
Ay = 1/2R, Ay =1/2R + 1/28

with corresponding eigenvectors

-l o)

1 0 -
Thus matrix A = (0 1) giving y = 0. Since the cylinder W' is at rest, v' = 0 giving the
6 dimensionai force % on the sphere as
F=—ux v+ 0, [7.11]

where the matrix .#", determined by [6.9], is given by

, 4nR|S|V2 [ R + 4S
-”/11='—“na) l llrv( )
IR+ S|'-\2R + 58
47tR|S|”2 (3R2 + RS + 457
A ., = —(lna
22 ) IR + §*72 3R + 5§
12nR2?|S|32
A3y =al ud + O(ln a)

IR + SIV*(R + 29)
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. o oy 2ATROISE
: = —-\nha)——asT .
e IR + SP2(3R + 58)
| 24nR3|SP >
v 4 55 = —-“n a) S P T HE PE
IR + S|' %2R + 55)
127R2|S)? 2

H =45 =(na)

IR + S| *(2R + 58)°

—(ln a)127R3|S|>%(S — R)

H g = K, = -
24 42 IR + S*?(3R + 58)

[7.12]

all other components being non-singular. These results are valid for the sphere either outside
(§ > 0) or inside (S < 0, R + S < 0) the cylinder.

8§ DISCUSSION OF RESULTS

The “lubrication” theory described in the previous sections gives the singular nature as
a — 0 of the force and torque exerted on the surface W (with [2.2b]) which is almost in
contact with the surface W’ (with [2.3b]) at a point O, the two surfaces having prescribed
motion.

Thus relative translational motion of the surfaces in the direction of their normals pro-
duces a normal force or order a~' and a normal torque of order (In a) on the surface W.
Also tangential components of velocities and angular velocities of the walls produce a
tangential force and torque on W of order (In a). Relative rotation of the surfaces about
their normal produces a normal force on the surface W of order (In a). Also, in general,
tangential components of velocity and angular velocity can produce a normal lift force of
order (In ) and a normal velocity produce tangential components of force and torque of
order (In a). Although these components have not been determined here their values, which
depend on the gradient of surface curvature, have been shown to be no longer singular
if the surfaces are locally symmetric.

The results may be used, for example, in investigating the sedimentation of a particle
which is almost in contact with a vertical wall. Thus if one considers a uniform sphere
sedimenting as a result of a force (F.0.0) acting at its centre (see figure 4), it is seen that
since this external force and torque on the body must be balanced by the hydrodynamic
force and torque given by [7.8]. one must have

—F, = u(ln a)R(4n/5)(4U | — 3RQ,). F\R = u(ln )R*(127/5)(— U + 2RQ,). [8.1]
where U, is the velocity of the sphere at the contact point O. Thus
U, = —3RQ,. [8.2]
and if one denotes the 1-component of the velocity at the sphere centre as Ut so that
Ut = U, — RQ,, [8.3]
then U¥/(RQ,;) = —4, [8.4]
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Figure 4. Sphere undergoing sedimentation near a vertical plane wall.

which gives the relationship between the translational velocity and angular rotation of the
sphere when the gap a is very small. Also

F F

-, Ut = — — 85
12npR¥(In a) ! 3nuR(In a) [8.5]

Q,
from which it is seen that as a — 0, both Q, and U* tend to zero like (Ina)~!. However
as pointed out by Goldman, Cox & Brenner (1967), the theory may no longer be valid if a
is too small due to surface roughness effects, Non-Newtonian fluid effects or to the effect
of cavitation taking place in the gap. It should be noted that very high pressures are
produced in the gap, these being for the general case, of order a™2 for relative normal
translation, of order a~*? for tangential relative motion and of order a~' for relative
normal rotation of the two surfaces. For the corresponding two dimensional problem of the
motion of a circular cylinder almost in contact with a plane, high pressures are similarly
produced in the gap (Pinkus & Sternlicht 1961).

The general results given in §7 may in a similar manner be used to investigate the motion
of a non-spherical particle undergoing sedimentation near a plane wall or the relative
motion of two such particles under the action of external forces (such as electrical forces)
in a fluid at rest. The motion of a sphere near a fixed cylinder may be obtained by the use of
[7.11] and [7.12] and may form the basis of a model for the motion of a particle in a fibrous
filter, or for the motion of a sphere undergoing sedimentation in a cylindrical tube.

In fact if U? is the velocity of centre and Q, the angular velocity of a uniform sphere of
radius R undergoing sedimentation inside or outside of a vertical circular cylinder of
radius § it may readily be shown from {7.12] that the equations analogous to (8.1) for this
case give

U3 (4 + R/S) [8.6]

RQ, " \I+Rss

where for the sphere outside the cylinder S > 0, and for the sphere inside S < 0. Note that
for this latter case, the value of U}/RQ, increases as R increases and tends to infinity as
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R/S — -1, at which stage the theory is no longer valid since one almost has line rather
than point contact.

Further applications of the general results given in Section 6 include problems in which
the two surfaces involved are:

(a) two cylinders with axes in arbitrary directions,

(b) a plane and an axisymmetric body with fore—aft symmetry (e.g. spheroid. torus) with
axis parailel to the plane,

(c) two such axisymmetric bodies with axes parallel,

{d) a circular cylinder and an axisymmetric body (with fore-aft symmetry) with axis
perpendicular to cylinder axis.

Also the partial solution to problems involving two completely arbitrary smooth bodies
may be found. For example:

(a) If Uy« U,, U, (e.g an arbitrary body undergoing sedimentation near an inclined
plane not nearly horizontal), the U,, U,. Q,, &, can be found if forces and torques
are given (leaving only U;, Q5 unknown).

(b) If U;isof order U,, U, (e.g. an arbitrary body undergoing sedimentation on a nearly
horizontal plane), U, may be found.

(c) If body rotates about the 3-axis alone, F; may be found.

(d) If body translates along the 3-axis alone. F; and G, may be found.

() In any motion for which U; = 0 the quantities F,. F,. G, and G, may be found.
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Sommaire—Les forces et les couples agissant sur deux particules solides en mouvement suspendues
dans un fluide et presque en contact I'une avec I'autre (ou sur une particule presque en contact
avec une paroi) sont trouvées en fonction de leur mouvement relatif en utilisant un type de théorie
de lubrification. les résultats ainsi obtenus étant asymptotiquement valables pour des espaces de
faible grandeur. Il est supposé que les surfaces des particules impliquées, si elles sont rapprochées,
sont telles que le contact aurait lieu & un sew/ point auquel les courbatures de surface sont définies.

Auszug—Die Krifte und Drehmomente auf zwei sich bewegende feste Trilchen, die in einer
Fliissigkeit schweben und sich beinahe beriihren (oder auf ein beinahe eine Wand beriihrendes
Teilchen) werden in Bezug auf ihre relative Bewegung mit einer Art Schmiertheorie gefunden,
‘und die so erhaltenen Ergebnisse sind asymptotisch fiir kileine Liickenbreiten giiltig. Es wird
angenommen, daB die Oberflichen der betroffenen Teilchen im Falle eines Zusammenkommens
derartig sind, daB Berithrung an einem einzelnen Punkt erfolgen wiirde, an dem Oberflichen-
kriimmungen endlich sind.

Pestome—IIpH mOMOIIM MOAEIH TEOPMH CMAa3KH HAIILTH C TOYKH 3peHHS OTHOCHTENBLHOIO
NBUXEHHSA ABMXYLIYIO CHIYy H KDYTAILCS YCHIIME [BYX NEPEIBHTAIOLIMXCA TBEPABIX YaCTHIL,
B3BCIIEHHBIX B XHAKOCTH H MOYTH YTO CONPHKACAIOLIMXCH APYr C ApYroM (MIM YACTHIILI,
KOTOpasi MOYTH YTO CONPHKACAECTS CO CTeHOH). IlomyveHHrle TakuM 06pa3oM pe3ymnbTaThl
OKa3aJIMCh ACHMMNTOTHYECKM NPMMEHMMBI IUIA HeWMpoxux 3a3opos. Ilpennonaraior, yro
€C/IM NOBEPXHOCTH DPACCMATPHBAEMBIX YACTHI[ CTOJIKHYTCA, TOrAa KOHTaKkT mpow3oiner
TOJILKO B TOM 000l TOMKE, T€ KPHBH3HBI IOBEPXHOCTEH PUHHUTHBIE.
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